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Abstract— We study the efficiency of oligopoly equi-
libria in a model where firms compete over prices. The
motivating examples are the allocation of network flows in
a communication network or of traffic in a transportation
network. Contrary to most related papers, we study the
case when the users are atomic, i.e., each user controls a
non-negligible fraction of the total traffic. We show that
competition among profit maximizing firms can reduce the
overall efficiency of the system, measured as the difference
between users’ willingness to pay and delay costs. In
particular, we characterize a tight bound of 1 − N

6(N+1)

on worst case efficiency in pure strategy equilibria, where
N is the number of atomic users.

I. INTRODUCTION

We consider the problem of price competition in the
presence of congestion costs assuming that the end users
are atomic, i.e., each user controls a non-negligible
fraction of the total traffic. In particular, we study the
following environment: N self-interested users wish to
route their flow using a network of I parallel links.
Each of these links is owned by a profit maximizing
firm. Firm i sets a per unit of flow price on link i.
Finally, congestion is modeled with the use of convex
non-decreasing latency functions on each link.

The motivation for our setting comes mainly from
telecommunication and transportation networks and the
key feature is the negative externality that users exert
on others due to congestion. Early work on charac-
terizing the effects of this negative externality include
the seminal paper by Pigou, [12], as well as work in
transportation and telecommunication networks ([3]).
Recently, there has been considerable effort in quan-
tifying the efficiency loss that results from the selfish
behavior of the participating agents. In particular, there
is a growing literature on providing tight bounds on
the ”price of anarchy”, defined as the worst case ratio
of performance at equilibrium over the socially optimal
performance ([13], [6], [11], [10]). Related to our work
are the papers [14],[2] and [1], which study multi-stage
games, where firms compete over prices and over prices
and capacities respectively. Our current work extends
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the aforementioned models in the case when the users
are atomic, i.e. control a non negligible amount of flow.

Our paper is also related to [7] and [9], which study
routing games with atomic users. The difference of our
work is that we are focusing on a two stage game, where
profit maximizing firms compete over prices and self
interested users route their traffic after observing the
prices set in the first stage of the game. Note that users
in our model are anticipating the effects of their routing
decision on prices and are not simply price takers, as
in [2] and [1].

II. MODEL

We consider a network with I parallel links, each of
which is owned by a different firm. Let xi denote the
total flow on link i. We assume that each link has a
flow-dependent latency function li(xi), which measures
the delay as a function of the total flow on link i. The
firms set per unit of flow prices on the links they own.
In particular, pi denotes the price set by firm i on link
i.

We are interested in the problem of routing d units
of flow across the I links. Contrary to some recent
papers, we assume that there exists a finite number
N of self-interested users. In this paper we focus on
the symmetric user model, where each user controls
d
N units of flow, i.e. all atomic users control the same
amount of flow. Let N = {1, · · · , N} denote the set
of users and I = {1, · · · , I} denote the set of links.
We also assume that users obtain utility R per unit of
flow they send across the network and that the users
choose not to send any additional flow if the effective
cost exceeds their utility R.

Next we define the notion of flow equilibrium in this
setting

Definition 1 For a given price vector p ≥ 0, a matrix
xFE ∈ <I×N

+ is a Flow Equilibrium (FE) if for every
k ∈ {1, · · · , N}

xk,FE ∈ arg max
xk≥0,

∑
xk

i≤d/N

I∑

i=1

uix
k
i , (1)

where ui = R − li(
∑

j 6=k xj,FE
i + xk

i ) − pi. Also xj
i

denotes the flow that user j allocates to link i.



We denote the set of flow equilibria at a given price p
by FE(p).

Assumption 1 For each i ∈ I, the latency function li
is convex, nondecreasing, twice continuously differen-
tiable and satisfies li(0) = 0, i.e., all latency is due to
flow of traffic, there are no fixed latency costs.

The assumptions of differentiability and zero latency
at zero flow are adopted because they simplify the
analysis. Our results extend when these assumptions
are relaxed, however the corresponding analysis is more
involved.

From the optimality conditions for (1) we obtain the
following lemma, which will be key in the subsequent
analysis.

Lemma 1 Let Assumption 1 hold. Moreover let

P = min
m
{pm + lm(x∗m) + xk,∗

m l
′
m(x∗m)}.

Then, a nonnegative matrix x∗ ∈ FE(p) if and only if
the following hold for all players k ∈ {1, · · · , N},

pi + li(x∗i ) + xk,∗
i l

′
i(x

∗
i ) = P, ∀ i such that xk,∗

i > 0

pi + li(x∗i ) + xk,∗
i l

′
i(x

∗
i ) ≤ R, ∀i, k∑

i∈I
xk,∗

i ≤ d/N.

If the last inequality is strict then

pi + li(x∗i ) + xk,∗
i l

′
i(x

∗
i ) = R.

The existence and continuity properties of flow equi-
libria can be studied based on their equivalence with
optimal solutions of a particular convex optimization
problem. This is stated formally in the following propo-
sition.

Proposition 1 Let Assumption 1 hold. For any price
vector p ≥ 0, the set of flow equilibria for the given
price vector, F (p), is nonempty. Moreover, the corre-
spondence F is upper semicontinuous.

Proof: Consider the following optimization prob-
lem

maximizex≥0

∑N
k=1

∑I
i=1(R− pi)xk

i−
∫ xk

i +Xi

0
[li(z) + l

′
i(z)(z −Xi)]dz

subject to
∑

xk
i ≤ d/N ∀ k,

where Xi =
∑

j 6=k xj
i . The existence and continuity

properties of flow equilibria can be established by
noting that the first order optimality conditions of the

above (convex) problem are precisely the FE optimality
conditions.

Note that flow equilibria are not necessarily unique
unless the latency functions are strictly increasing.

We next define the social problem and the social
optimum, which is the flow allocation that would be
chosen by a planner that has full information and full
control over the network and whose objective is to
maximize the total efficiency of the system.

Definition 2 A flow vector xS is a social optimum if
it an optimal solution of the social problem

maximizex≥0

∑
(R− li(xi))xi

subject to
∑

xi ≤ d

From assumption 1 we deduce that the social problem
has a continuous objective function and a compact
constraint set, thus a social optimum exists. Finally, we
define the value of the objective function in the social
problem,

S(x) =
∑

i

(R− li(xi))xi

as the social surplus, i.e. the difference between the
users’ willingness to pay and the total latency.

III. OLIGOPOLY EQUILIBRIUM

As mentioned in the model description, we assume that
there exist I service providers, each of which owns a
single link. Service provider i charges a per unit of flow
price pi on the link i it owns. Given the vector of prices
set by the competitors, the profit of service provider i
is

Πi(pi, p−i, x) = pi

N∑

j=1

xj
i ,

for x ∈ FE(pi, p−i).
The objective of each service provider is to maximize

profits. Note that the profits of service provider i depend
on the prices set by the other providers, i.e. p−i.
We refer to the game among service providers as the
price competition game. Naturally we can define an
equilibrium of that game as follows

Definition 3 A vector (pOE , xOE) ≥ 0 is a pure strat-
egy Oligopoly Equilibrium (OE) if xOE ∈ FE(pOE)
and for all s ∈ S

Πs(pOE
s , pOE

−s , xOE) ≥ Πs(ps, p
OE
−s , x),

∀ ps ≥ 0 and ∀ x ∈ FE(ps, p
OE
−s ).

We refer to pOE as the OE price. Note that the
equilibrium concept we defined here is stronger than the
usual equilibrium concept used for multistage games,
the subgame perfect equilibrium. However, we can



show that the two solution concepts are equivalent in
our setting. Next we state an existence result for pure
strategy oligopoly equilibria.

Proposition 2 Let Assumption 1 hold. Further assume
that the latency functions are linear. Then the price
competition game has a pure strategy Oligopoly Equi-
librium.

The above existence result cannot be extended to
general latency functions.

Here is an additional assumption that is useful for
the price characterization at equilibrium we provide in
proposition 3.

Assumption 2 The latency functions li satisfy∑I
i=1 l

′
i(xi) > 0, i.e. at any point at least one latency

function is strictly increasing.

The following lemma states that if one of the firms
makes positive profits then all the firms make positive
profits.

Lemma 2 Let (pOE , xOE) be a pure strategy OE.
Also, let Assumption 1 hold. Let Πi denote the profit
of service provider i at equilbrium. If Πi > 0 for some
i ∈ I , then pOE

j xOE
j > 0 for all j ∈ I.

Next we provide a characterization of equilibrium
prices which is essential in our efficiency analysis.

Proposition 3 Let (pOE , xOE) be a pure strategy OE
such that pOE

i xOE
i > 0 for some i ∈ I. Let Assump-

tions 1 and 2 hold. We have

pOE
i =





xOE
i

N [(N + 1)l
′
i + xOE

i l
′′
i ]

if l
′
j = l

′′
j = 0 for some j 6= i

min{A, B}
where

A =

xOE
i

N [(N + 1)l
′
i + xOE

i l
′′
i ]

+xOE
i

N

(∑
j 6=i

1
(N+1)l

′
j+xOE

j l
′′
j

)−1

B = mink{R− li − l
′
ix

k,OE
i }

and xOE
i denotes the total flow on link i at equilibrium.

Note that for simplicity we omit the arguments in the
expressions for the latency functions, i.e., we write li
instead of li(xOE

i ).

Before moving on with the proof it is worth noting a
few things.
• When N → ∞ the price characterization above

reduces to the one for nonatomic players in [2].

• Note that for this price characterization we used the
fact that users have the same amount of flow. This
allows us to assert that at equilibrium the effective
costs for each player and link are equal, i.e.,

pi + li + xk,OE
i l

′
i = pj + lj + xk,OE

j l
′
j , ∀ i, j, k.

Proof: We will show the result for M service
providers (links) and N atomic users, each controlling
a non negligible amount of flow. Without loss of gen-
erality we will obtain an expression for the equilibrium
price of link 1 (the same will be true for any i). Here is
the optimization problem that firm 1 solves for choosing
its price.

max p1(x1
1 + · · ·xM

1 )

s. t.
∑M

j=1 xk
j ≤ dk

for all atomic users k ∈ N

p1 + l1(x1) + xk
1 l
′
1(x1) = pi + li(xi) + xk

i l
′
i(xi)

for all atomic users k ∈ N and all firms i 6= 1

The analysis proceeds with examining the first order
optimality conditions of the above optimization prob-
lem. In the following λij corresponds to the langrange
multiplier for the constraint that involves player i (i ∈
{1, · · · , N}) and link j (j ∈ {2, · · · ,M}). In particular,

x1 =
∑

i,j

λij (2)

p1 − θk −
N∑

i=1

[
M∑

j=2

λij(l
′
1 + xi

1l
′′
1 + 1k=j l

′
1)] = 0 (3)

for all players k

( total N equations. )

θk = λkj(2l
′
j + x1

j l
′′
j ) +

∑

r 6=1

[λrj(l
′
j + xr

j l
′′
j )] (4)

for all links j ∈ {2, · · · ,M} and all players k

( total N · (M − 1) equations. )

Under our assumptions the solution of the above
system of equations yields the following.

pi =

xOE
i

N [(N + 1)l
′
i + xOE

i l
′′
i ]+

xOE
i

N

(∑
j 6=i

1
(N+1)l

′
j+xOE

j l
′′
j

)−1

,

or

pOE
i =

xOE
i

N
[(N + 1)l

′
i + xOE

i l
′′
i ].

when l
′
j = l

′′
j = 0 for some j 6= i.



Finally we consider the case when the effective cost
for some player k on link i is equal to the reservation
utility R. Then,

pi = R− li(xOE
i )− l

′
i(x

OE
i )xk,OE

i .

Combining the preceding relations yields the desired
price characterization.

IV. EFFICIENCY ANALYSIS

This section contains our main result, which provides
tight bounds on the inefficiency of oligopoly equilibria.
We consider only price competition games that have
pure strategy equilibria. For such games, we define the
efficiency metric as:

rI({li}, xOE) =
R−∑

i∈I xOE
i · li(xOE

i )
R−∑

i∈I xS
i · li(xS

i )
,

where xS is a social optimum given the latency func-
tions and R is the utility users obtain per unit of flow
they send across the network. We are interested in
providing a lower bound on the efficiency metric in
the worst case scenario, both in terms of parameter
values as well as equilibrium selection. In particular,
following recent literature on the ”price of anarchy”
we are interested in providing lower bounds for the
following quantity

inf
{li}∈LI

inf
xOE∈OE({li})

rI({li}, xOE).

In what follows we are using techniques developed in
[2]. The idea can be summarized in the following. We
are interested in minimizing the efficiency metric over
the space of allowable latency functions. The problem
is generally infinite-dimensional, however we are able
to bound its value by a the optimal value of a finite
dimensional problem using the relations between the
flows at social optimum and equilibrium as well as
assumptions on the latency functions (eg. convexity).
Our main result is the following:

Theorem 1 Let Assumptions 1 and 2 hold. Consider a
network with I links, where each link is owned by a
different provider. Then

r ≥ 1− N

6(N + 1)

where N denotes the number of self interested users.
Moreover the bound is tight, i.e. there exists latency
functions that attain the lower bound.

Proof Sketch. We begin by restricting the class of
latency functions we need to consider. In particular, the
next two lemmas provide conditions under which the
price of anarchy is 1, i.e., there is no loss of efficiency

at the corresponding oligopoly equilibria. The proofs
of the lemmas are omitted due to space constraints (see
our paper [5]).

Lemma 3 Let (pOE , xOE) be a pure strategy OE such
that pOE

i xOE
i = 0 for all i ∈ I . Then xOE is a social

optimum.

Lemma 4 Assume that

R
∑

i∈I

xs
i =

∑

i∈I

li(xs
i )x

s
i ,

for some social optimum xs. Then every xOE ∈
OE({li}) is a social optimum, implying that the price
of anarchy, i.e. rI({li}, xOE) = 1.

From now and for the rest of the proof, we restrict
attention to a two-link network with two atomic users.
The proof readily extends to the case of I links and N
atomic users.

Given {li} ∈ L2, i.e. the latency functions of the
two links, let xOE ∈ OE({li}) and let xs be a
social optimum. We get that the following optimization
problem is a lower bound on the price of anarchy:

minimize R−l1yOE
1 −l2yOE

2
R−lS1 yS

1 −lS2 yS
2

subject to lSi ≤ yS
i (lSi )

′
(5)

li ≤ yOE
i (li)

′
(6)

lS2 + yS
2 (lS2 )

′
= lS1 + yS

1 (lS1 )
′

(7)
lS1 + yS

1 (lS1 )
′ ≤ R (8)

yS
1 + yS

2 ≤ 1 (9)
l1 + l

′
1(y

s
1 − yOE

1 ) ≤ lS1 (10)

+{Oligopoly Equilibrium Constraints}(11)

The problem above can be viewed as a finite dimen-
sional problem, which essentially captures the equilib-
rium and social optimum characteristics of the problem
of minimizing the efficiency metric defined in the
beginning of the section. This implies that instead of
optimizing over entire functions, we can optimize over
the possible function values at equilibrium and at social
optimum. The constraints of the problem guarantee that
the values over which we are optimizing satisfy the
necessary conditions for social optimality and equilib-
rium. In particular, constraints 5 and 6 follow from
the convexity assumptions on l1, l2, constraints 7 and
8 follow from the optimality conditions for the social
optimum. Condition 10 follows by the convexity of



function l1. Finally, the last set of constraints are the
necessary conditions for a pure strategy OE and are
characterized by lemma 3.

It can be seen that at the optimal solution of the above
problem, we have l1 = l

′
1 = 0, thereby reducing the

problem to the following problem (for details, see refer
to [5]):

minimize 1− l2yOE
2

R

subject to l2 ≤ yOE
2 (l2)

′

yOE
1 + yOE

2 = 1

p1 = p2 + l2(yOE
2 ) + yOE

2A l
′
2(y2)

p1 = p2 + l2(yOE
2 ) + yOE

2B l
′
2(y2)

p1 ≤ R

The optimal value of this problem is

(l̄2, l̄
′
2, y

OE
1 , yOE

2 , yOE
2A , yOE

2B ) =
(R/3, R, 2/3, 1/3, 1/6, 1/6)

and therefore it follows that the efficiency metric is
lower bounded by 8/9 (which is equal to 1 − N

6(N+1)
for N = 2).

Next we give an example which matches the lower
bound, thus implying that the bound is tight.

Example 1 Consider a two link network. Let the total
flow be d = 1 and the reservation utility be R. Assume
that the latency functions are given by

l1(x) = 0 and l2(x) = x

Moreover suppose that user A controls 1/2 of the
flow, whereas user B controls another 1/2. It can be
verified that the vector (pOE

1 , pOE
2 ) = (1, 1/2) with

(xOE
1 , xOE

2 ) = (2/3, 1/3) is a pure strategy OE. On
the other hand, the social optimum is (xs

1, x
s
2) = (1, 0).

The price of anarchy in this example is equal to 8/9.

Similar arguments can be used to show the result for
the general case of N atomic players and M service
providers.

V. CONCLUSIONS AND FUTURE WORK

We have analyzed a model of price competition between
profit maximizing firms when the end users can be
atomic, i.e., each user controls a non-negligible fraction
of the total traffic. We showed that in the worst case
the system’s efficiency loss is bounded from above by

N
6(N+1) , where N is the number of users in the system,
when the users are symmetric, i.e., they control the same
amount of flow. An obvious extension of our work is to
prove a tight bound on the efficiency loss, when users

are asymmetric. We conjecture that the same bound is
true for this case.

Our work raises a number of challenging questions.
In particular, in many cases firms do not just name
a price for their links, but rather, take the market
power of the respective users into account, i.e. the
amount of traffic they are controlling, and negotiate the
price separately with each one of them. It would be
interesting to incorporate this feature into our model,
for example using some kind of a bargaining solution.

Another interesting issue is considering hybrid mod-
els, i.e. where a fraction of the total flow is controlled
by infinitesimal users (as in most of previous literature)
and the rest is controlled by a number of atomic users. A
motivating example would be a transportation network,
which is used by private cars (infinitesimal users) and
a large truck company (atomic user).
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