
Observational Learning in an Uncertain World

Daron Acemoglu, Munther Dahleh, Asuman Ozdaglar, and Alireza Tahbaz-Salehi

Abstract— We study a model of observational learning in
social networks in the presence of uncertainty about agents’
type distributions. Each individual receives a private noisy
signal about a payoff-relevant state of the world, and can
observe the actions of other agents who have made a decision
before her. We assume that agents do not observe the signals
and types of others in the society, and are also uncertain about
the type distributions. We show that information is correctly
aggregated when preferences of different types are closely
aligned. On the other hand, if there is sufficient heterogeneity
in preferences, uncertainty about type distributions leads to po-
tential identification problems, preventing asymptotic learning.
We also show that even though learning is guaranteed to be
incomplete ex ante, there are sample paths over which agents
become certain about the underlying state of the world.

I. INTRODUCTION

Since Savage’s seminal work [1] in 1954, it has been well
understood that under some regularity conditions, a Bayesian
agent with access to a large collection of data can eventually
learn an unknown parameter of interest. However, in many
real world scenarios, the relevant information for learning
the unknown state is not concentrated at the disposal of
any single individual, and instead, is spread among a large
collection of agents. For example, the information about the
quality of a product is shared among all individuals who
have purchased that product. Such observations have moti-
vated a fairly large literature investigating the problems of
information aggregation and learning in social and economic
networks.

One of the most prominent frameworks for studying the
problem of information aggregation in social networks has
been the observational learning framework. In this frame-
work, a collection of individuals with limited private in-
formation about a payoff-relevant state of the world make
decisions sequentially. In addition to the private information
available to the decision makers, they can also observe
the actions of a subset of other agents who have already
made their decisions. The central question in such models is
whether eventually the true underlying state of the world is
revealed as more agents make decisions.

The observational learning framework was independently
introduced by Banerjee [2] and Bikhchandani, Hirshleifer,
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and Welch [3]. They showed that a bound on the informa-
tiveness of agents’ private signals leads to an incorrect herd
with positive probability, where individuals cannot properly
infer the underlying state of the world from the actions of
their predecessors. These works were followed by Smith
and Sørensen [4], who showed that in the presence of
unbounded private signals and with the entire history of
actions observable, asymptotic learning is achieved in all
equilibria. In a related work, Acemoglu, Dahleh, Lobel, and
Ozdaglar [5] extend this result to general network topologies,
where instead of observing the entire history, individuals can
only observe the actions of a subset of agents. Observational
learning models allowing for private, heterogeneous prefer-
ences have been studied by Smith and Sørensen [4], and
more recently, Acemoglu, Dahleh, Lobel, and Ozdaglar [6].

Even though existing models, like [4] and [6], allow for
private information on payoffs, they all include common
knowledge about the distribution of preferences among their
standing assumptions. However, it is natural to assume
that there exists some uncertainty about the distribution of
preferences of other individuals in the society. For example,
consumers of a certain product might be uncertain about the
exact distribution of other consumers’ tastes.

In this paper, we study the evolution of beliefs and actions
in the observational learning framework, when individuals
are uncertain about the incentives of other agents in the
society. To investigate this problem, we consider a model
in which the dependence of the payoffs on the unknown
state of the world varies across agents; that is, we consider a
model where individuals are of different types. Moreover,
we assume that not only each agent is unaware of her
predecessors’ types, but also she is uncertain about the
probability distribution from which they were sampled. Such
uncertainties require the agents to hold and update beliefs
about the distribution of types as observations accumulate.
It is the absence of common knowledge about the distribution
of preferences that distinguishes our model of observational
learning in an “uncertain world” from those already studied
in the literature.

We show that if preferences of different types are suffi-
ciently aligned with one another, uncertainties about type
distributions have no effect on asymptotic learning, with
information eventually aggregated through individuals’ ac-
tions. On the other hand, we establish that if there is
sufficient heterogeneity in preferences, then type distribution
uncertainties lead to asymptotic identification problems with
positive probability, and as a result, agents cannot infer any
further information from their predecessors’ actions. Our
key observation is that with incentives of different types



sufficiently apart, such identification problems arise even if
the amount of uncertainty is arbitrarily small.

The failure of information aggregation in environments
with type uncertainties is different from the herding behavior
observed by Banerjee [2] and Bikhchandani et al. [3].
Whereas in herding outcomes agents discard their private in-
formation in favor of the public history, they continue to use
their private information in the presence of type distribution
uncertainties. However, the pattern of their decisions are such
that an identification problem arises in the public history,
and therefore, limits its informativeness. Following Smith
and Sørensen [4], we refer to such outcomes as confounded
learning.

Another key implication of our results is that in observa-
tional learning models with type distribution uncertainties,
it is possible for agents to asymptotically become certain
about the true state of the world, despite the fact that
learning is guaranteed to be incomplete ex ante. In other
words, depending on the signals observed by the agents, it
is possible for the posterior beliefs to converge to the true
state, even though ex ante, individuals do not believe that
they will learn the state. Such a phenomenon does not occur
in models consisting of a single type of agents (e.g. [3] and
[5]), as ex post and ex ante asymptotic learning coincide.

In addition to the works in the social learning literature
mentioned above, our paper is also related to a recent work
by Acemoglu, Chernozhukov, and Yildiz [7] which studies
the effect of uncertainty about the signal distributions on
asymptotic learning and agreement of Bayesian agents. It
shows that a vanishingly small individual uncertainty about
the signal distributions can lead to substantial differences in
asymptotic beliefs. Whereas in [7] the identification prob-
lems are inherent to the structure of the signals observed
by the agents, the identification problem that arises in our
model is an equilibrium phenomenon – a consequence of the
rational decision making of agents who have already made
their decisions.

The rest of the paper is organized as follows. In Section II,
we present our model and define asymptotic learning over the
social network. Section III contains our main results, where
we show that uncertainties about type distributions result in
incomplete learning if the incentives of different types are not
closely aligned. In Section IV, we show that there are sample
paths over which agents eventually become certain about the
true state, despite the fact that learning is guaranteed to be
incomplete. Section V concludes.

II. THE MODEL

A. Agents and Observations

Consider a group of countably infinite agents indexed by
n ∈ N, making decisions sequentially. The payoff of each
agent depends on her type, an unknown underlying state
of the world θ ∈ {0, 1}, and the agent’s decision. More
specifically, we assume that agents are of two possible types:

the normal type N and a biased type B, with payoffs

uN (x, θ) =
1
2

+ I{x = θ}

uB(x, θ) =
{

I{θ = 1}+ 1− h if x = 1
I{θ = 0}+ h if x = 0

where x ∈ {0, 1} is the action taken by the agent, h ∈ [0, 1]
is a parameter characterizing the bias of agent B towards
action x = 0, and I is the indicator function.1 Note that the
payoff of the biased type reduces to that of the normal type
for h = 1/2. With some abuse of notation, we sometimes
represent the type of agent n by tn ∈ {h, 1

2} instead of
tn ∈ {N,B}.

Each agent n ∈ N forms beliefs about the unknown
payoff-relevant state of the world θ after observing a private
noisy signal sn ∈ S and the actions of all agents who have
moved before her. The key assumption is that even though
agent n can observe the actions of individuals in the set
{1, 2, . . . , n−1}, she can observe neither their private signals
nor their types.

Conditional on the state θ, agents’ private signals are
independently and identically distributed according to dis-
tribution Fθ. We assume that the pair (F0,F1), known as
the individuals’ signal structure, are absolutely continuous
with respect to one another; implying that no signal can
fully reveal the state. Moreover, we assume that F0 and F1

are nonidentical, which guarantees that the private signals
are informative about the state. Throughout the paper, the
distribution functions Fθ are assumed to be continuous. We
also assume that ex ante, both states are equally likely; that
is, P(θ = 1) = P(θ = 0) = 1/2.

Agent n’s type, tn, is drawn randomly and independently
from the set of possible types {N,B} with probabilities λ
and 1− λ, respectively. However, these probabilities are not
a priori known by the agents. Instead, they hold a common
prior belief over the set of possible type distributions in the
society.2 We assume that agents’ prior beliefs about λ has
a binary support {λ1, λ2}, where λ2 > λ1. We denote the
prior belief of the agents assigned to the event {λ = λ1} by
H(λ1).

Due to the incomplete information, agents need to form
and update beliefs about parameter λ, in addition to the
unknown payoff-relevant state θ. In the next sections, we
show how this uncertainty about type distributions affects
asymptotic aggregation of information over the network.

B. Solution Concept and Learning

Before making decision, agent n knows her type tn ∈
{N,B}, has access to her private signal sn ∈ S, and can
observe actions of agents 1 through n − 1. Therefore, the
information set of agent n is In = {tn, sn, xk, k < n}. We

1We have assumed binary state and action spaces to simplify notation and
exposition. The main results presented in the paper hold for more general
state and action spaces.

2Note that parameter h, characterizing the level of preference heterogene-
ity of the two types, is common knowledge among all individuals. What
they are uncertain about is the probability according to which normal or
biased agents appear in the sequence.



denote the set of all information sets of agent n with In. A
pure strategy for agent n is a mapping σn : In −→ {0, 1},
which maps her information sets to actions. A sequence of
strategies σ = {σn}n∈N defines a strategy profile.

Definition 1: A strategy profile σ∗ is a Perfect Bayesian
Equilibrium if for every n ∈ N, σ∗n maximizes the expected
payoff of agent n, given the strategies of other agents, σ∗−n =
{σ∗1 , . . . , σ∗n−1, σ

∗
n+1, . . . }.

It is easy to verify that a Perfect Bayesian Equilibrium in
pure strategies always exists. Given any equilibrium σ∗, the
strategy of agent n is given by

σ∗n(In) =
{

1 if P(θ = 1|In) > tn
0 if P(θ = 1|In) < tn

where tn ∈ {h, 1
2} corresponds to her type.

Our main focus is on whether equilibrium behavior will
lead to information aggregation. This is captured by the
notion of asymptotic learning, defined below.

Definition 2: Asymptotic learning occurs in a Perfect
Bayesian Equilibrium, if the posterior beliefs about the
payoff-relevant state θ converge to the truth as more agents
make decisions; that is, if

lim
n→∞

P(θ = j|In) = I{θ = j} for j ∈ {0, 1}.

Note that our notion of asymptotic learning does not
require the individuals to learn the entire parameter vector
(θ, λ), as only its first component is payoff-relevant. How-
ever, they still form and update beliefs about both compo-
nents. In the next section, we show that individuals’ beliefs
about type distributions plays a key role in the asymptotic
revelation of θ.

We also remark that the concept of asymptotic learning
is defined in terms of the ex post probability assessments of
the individuals. In other words, asymptotic learning occurs
on a given sample path if the beliefs assigned to the true
state converge to one on that path. This notion is distinct
from the situation in which ex ante, agents believe that the
sequence of actions will eventually reveal the payoff-relevant
state θ. Such an ex ante assessment requires that asymptotic
learning occurs for almost all sequences of information sets,
{In}n∈N. More formally:

Definition 3: Asymptotic learning is complete in a Perfect
Bayesian Equilibrium, if

E
[

lim
n→∞

P(θ = j|In)
]

= I{θ = j}

for j ∈ {0, 1}.

C. Bounded vs. Unbounded Private Beliefs

Smith and Sørensen [4] show that the key property of the
signal structures that leads to learning in a world consisting
of a single type is the level of information revealed to agents
through their private signals. We define private beliefs of
agent n as p(sn) = P(θ = 1|sn) and remark that

p(sn) =
(

1 +
dF0

dF1
(sn)

)−1

where dF0/dF1 is the Radon-Nikodym derivative of F0 with
respect to F1. We define the support of the private beliefs as
B = {r ∈ [0, 1] : 0 < P (p(s1) ≤ r) < 1}, and say private
beliefs are unbounded if supB = 1 and inf B = 0. In other
words, under unbounded private beliefs, agents may receive
arbitrarily strong signals favoring either state with positive
probability, whereas with bounded private beliefs there is a
maximum level of information in any signal. Throughout this
paper, we assume that the private beliefs have an unbounded
support.

Finally, for notational simplicity, we represent the dis-
tribution of agents’ private beliefs conditional on the state
j ∈ {0, 1} by Gj :

Gj(r) = P (p(s1) ≤ r|θ = j) .

We assume that Gj(r) is continuously differentiable and
strictly increasing in r. In the next sections, we will use
the following lemma, the proof of which can be found in
[5].

Lemma 1: For any private belief distributions (G0,G1)
and for any r ∈ (0, 1), we have

dG0

dG1
(r) =

1− r
r

.

Moreover, when private beliefs are unbounded, the ratio
G0(r)/G1(r) is non-increasing in r, and G0(r) > G1(r)
for all 0 < r < 1.

Note that by definition, we have G0(0) = G1(0) = 0 and
G0(1) = G1(1) = 1.

III. MAIN RESULTS: TYPE UNCERTAINTIES AND
SOCIAL LEARNING

In this section, we study information aggregation and
asymptotic learning when individuals are of different types.
First, we compute the individuals’ equilibrium strategies,
and then, derive the social belief process dictated by the
equilibrium.

A. Equilibrium Strategies
Given that in equilibrium she maximizes her expected

payoff, an agent with index n takes action xn = 1, if and
only if

P(θ = 1|sn, xn−1) > tn,

where tn ∈ {h, 1
2} is her type, and xn−1 = (x1, . . . , xn−1)

is the public history of actions. On the other hand, by Bayes’
rule

P(θ = 1|xn−1, sn)
P(θ = 0|xn−1, sn)

=
P(xn−1|θ = 1)dP(sn|θ = 1)
P(xn−1|θ = 0)dP(sn|θ = 0)

=
P(θ = 1|sn)P(θ = 1|xn−1)
P(θ = 0|sn)P(θ = 0|xn−1)

,

where we have used the fact that, ex ante, all agents consider
both states equally likely. Thus, the equilibrium decision rule
of agent n is given by

xn(sn, xn−1, tn) =


1 if p(sn) >

tn(1−qn)
tn(1−2qn)+qn

0 if p(sn) <
tn(1−qn)

tn(1−2qn)+qn

(1)



where p(sn) is her private belief, and qn−1 is the social
belief, defined as

qn(xn−1) = P(θ = 1|x1, . . . , xn−1).

The equilibrium strategies derived in (1) are such that all
agents, except for the extreme scenarios of h ∈ {0, 1}, take
both their private signals and the public history into account
when making decisions. Note that this is a consequence
of unbounded private beliefs. With bounded private beliefs,
once social belief qn passes a certain threshold, all agents
discard their private signals; leading to the herding behavior
observed by Banerjee [2] and Bikhchandani et al. [3].

B. Social Belief Process

Recall that besides the payoff-relevant state of the world,
individuals are also uncertain about the probability distribu-
tion of types. Thus, they need to form and update beliefs on
the pair (θ, λ). We define the set of social beliefs

qjkn (xn−1) = P(θ = j, λ = λk|xn−1)

for j ∈ {0, 1} and k ∈ {1, 2}. Note that the above definition
immediately implies that qn = q11n + q12n .

A simple application of Bayes’ rule implies that the ratio
of the social beliefs must satisfy

qiln+1(x
n−1, z)

qjkn+1(xn−1, z)
=

qiln (xn−1)

qjkn (xn−1)

P(xn = z|xn−1, λ = λl, θ = i)
P(xn = z|xn−1, λ = λk, θ = j)

where z ∈ {0, 1}. Setting xn = 0 and applying Bayes’ rule
once again lead to

qiln+1(0)

qjkn+1(0)
=

qiln

[
λlGi(1− qn) + (1− λl)Gi

(
h(1−qn)

h(1−2qn)+qn

)]
qjkn
[
λkGj(1− qn) + (1− λk)Gj

(
h(1−qn)

h(1−2qn)+qn

)]
(2)

where we have dropped the dependence of the social beliefs
on xn−1 for notational simplicity. Equation (2) which cap-
tures the evolution of the social belief ratios is determined
by the equilibrium strategies. Note that according to the
equilibrium decision rule, agent n takes action xn = 0,
whenever p(sn) < tn(1− qn)/[tn(1− 2qn) + qn]; an event
which happens with probability Gj

(
tn(1−qn)

tn(1−2qn)+qn

)
if the

underlying parameters are (θ, λ) = (j, λk). A similar ex-
pression can be derived for the case that agent n takes action
xn = 1.

C. Asymptotic Beliefs

Our next observation is that social beliefs qjkn are bounded
martingales with respect to the filtration generated by the
public histories, and therefore, converge on almost all sam-
ple paths to some limit qjk∞ . The central question we are
interested in is whether the limiting social beliefs reveal the
payoff-relevant state θ. Before addressing this question, we
state and prove a few lemmas.

Lemma 2: Suppose that the underlying state of the world
is (θ, λ) = (j, λk). Then, the belief qjkn almost surely
converges to a limit which is not equal to zero.

Proof: Suppose that Ajk = {(θ, λ) = (j, λk)} holds.
Then, conditional on this event, a simple application of
Bayes’ rule implies that

E

[
1− qjkn+1

qjkn+1

∣∣∣∣∣xn−1, Ajk

]
=

=
∑

z∈{0,1}

P(xn = z|xn−1, Ajk)
1− qjkn+1(x

n−1, z)

qjkn+1(xn−1, z)

=
1− qjkn (xn−1)

qjkn (xn−1)
.

As a result, conditional on Ajk, the likelihood ratio `jkn ,
(1− qjkn )/qjkn forms a martingale, and by Doob’s martingale
convergence theorem [8], its limit must satisfy E(`jk∞) =
`jk0 <∞. The fact that `jk∞ = (1− qjk∞)/qjk∞ has a bounded
expectation implies that qjk∞ > 0 with probability one.

The above lemma states that fully incorrect learning is al-
most surely impossible. Our next lemma further characterizes
the limiting beliefs.

Lemma 3: Suppose that i 6= j and l 6= k. Then, condi-
tional on the event Ajk = {(θ, λ) = (j, λk)}, qikn → 0 and
qjln → 0 with probability one.

Proof: First consider the sequence {qjln }. Conditional
on the event Ajk, we know that qjkn does not converge to
zero almost surely. Therefore, the likelihood ratio qjln /q

jk
n

converges to some finite limit with probability one. By the
social belief update (2), this limit is equal to zero almost
surely, unless the equation

(λk − λl)
[
Gj(1− q)−Gj

(
h(1− q)

h(1− 2q) + q

)]
= 0

has a solution q ∈ (0, 1). However, no such q exists if h 6= 1
2 .

Thus, conditional on Ajk, qjln → 0 with probability one.
Now consider the sequence {qikn }. A similar argument

shows that qikn → 0 on almost all sample paths, unless there
exists a q ∈ (0, 1) that solves

λkGj(1− q) + (1− λk)Gj

(
h(1− q)

h(1− 2q) + q

)
=

λkGi(1− q) + (1− λk)Gi

(
h(1− q)

h(1− 2q) + q

)
.

However, recall that by Lemma 1, G0(r) > G1(r) for all
r ∈ (0, 1). Therefore, there are no interior solutions to the
above equation. This completes the proof.

The important consequence of Lemma 3 is that if agents
asymptotically learn either component of the state vector
(θ, λ), then they necessarily learn the other as well. In other
words, there is enough information in the public histories so
that agents can distinguish, say (θ = 0, λ1) from (θ = 1, λ1).
However, Lemma 3 does not guarantee asymptotic learning.
It is possible for identification problems to arise in the public
histories in such a way that agents cannot distinguish, say
(θ = 0, λ1) from (θ = 1, λ2).

The next result shows that if the incentives of the two
types are not too far apart, then asymptotic learning occurs
in equilibrium.



Proposition 1: Suppose limr↑1 G′1(r) and limr↓0 G′0(r)
are non-zero. Then, there exists ε > 0, such that complete
asymptotic learning occurs in equilibrium for all h ∈ ( 1

2 −
ε, 1

2 + ε).
Proof: Condition on event Ajk = {(θ, λ) = (j, λk)},

and suppose that i 6= j and l 6= k. An argument similar to the
one made in the proof of Lemma 3 implies that asymptotic
learning is complete if equation

λkGj(1− q) + (1− λk)Gj

(
h(1− q)

h(1− 2q) + q

)
=

λlGi(1− q) + (1− λl)Gi

(
h(1− q)

h(1− 2q) + q

)
(3)

has no solution in (0, 1). Since |h− 1
2 | < ε and ε is a small

number, we can expand the above equation around h0 = 1
2

and get

q(1− q)
[

Gj(1− q)−Gi(1− q)
q(1− q)

+ 4εf(q) +O(ε2)
]

= 0,

where f(q) = (1−λk)G′j(1−q)−(1−λl)G′i(1−q). Lemma
1 guarantees that the first term in the braces is sign-definite
and uniformly bounded away from zero for all q ∈ [0, 1].
Therefore, for small enough ε, the term in the braces is non-
zero for all 0 ≤ q ≤ 1, which completes the proof.

Proposition 1 establishes that complete asymptotic learn-
ing in the observational learning model of Smith and
Sørensen [4] is robust to uncertainties in type distributions,
as long as the bias in the incentive of the types are not too
far apart. Note that this result is independent of the agents’
prior beliefs and the level of uncertainty in the distributions;
i.e., λ1 and λ2. However, the complete learning results of
Proposition 1 do not hold for larger incentive biases. In
the next proposition, we show that if there is sufficient
heterogeneity in preference types, then certain identification
problems can arise in public histories and hence, beliefs do
not converge to the true underlying state of the world.

Proposition 2: Suppose that for all r ∈ (0, 1), we have
(G0/G1)(r) > r(1 − r)(G0/G1)′(r). Then, there exists
ε > 0 such that for all h ∈ [0, ε), asymptotic learning is
generically incomplete.

Proof: Due to the continuity of G0 and G1, it is
sufficient to show that asymptotic learning is incomplete for
h = 0.

Suppose that h = 0. By Lemma 3, conditional on the
event Ajk, we have qjl∞ = qik∞ = 0 with probability one.
Therefore, complete asymptotic learning is obtained if and
only if qiln → 0 almost surely. Similar to the proof of Lemma
3, the limit of sequence {qiln} depends on the number of
interior solutions of equation (3), which for h = 0, reduces
to

λkGj(1− q) = λlGi(1− q). (4)

Note that we have λ2 > λ1 and G0(r) > G1(r) for all
r ∈ (0, 1), as shown by Lemma 1. Therefore, if (j, λk) =
(1, λ1) or (j, λk) = (0, λ2), then (4) has no solution except
for q ∈ {0, 1}. Thus, conditional on the event A11 or A02,
the social belief assigned to the true state converges to one.

However, if (j, λk) = (1, λ2), then there exists a q∗ ∈ (0, 1),
such that

λ2G1(1− q∗) = λ1G0(1− q∗).

Note that since G1(r)/G0(r) is monotone in r, there is
exactly one interior solution to the above equation. Similarly,
an interior social belief exists when (j, k) = (0, 1).

In order to complete the proof, we need to show that
the interior solution q∗ is locally stable; that is, starting
from a neighborhood of q∗, the social beliefs converge to
q∗ with positive probability. The key observation here is
that that social beliefs qjkn are Markov-martingale stochastic
processes, and therefore, we can use the first-order stability
criterion for Markov-martingales to establish local stability
of q∗. This stability criterion is stated in the Appendix.

For z ∈ {0, 1}, we define the functions φz : R3 −→ R3

as

(q12n+1, q
11
n+1, q

02
n+1)(x

n−1, z) = φz(q12n , q
11
n , q

02
n ).

which express social beliefs of agent n+1 in terms of social
beliefs of agent n and her action xn = z. Note that it is
sufficient to express the social beliefs only as a function of
q12n , q11n , and q02n , as the remaining belief q01n linearly depends
on these terms. Also note that (q∗, 0, 0) is a fixed point of
functions φ0 and φ1.

Using straightforward algebraic computations one can
show that the eigenvalues of ∇φ1|(q∗,0,0) are given by

v1 =
1− λ2G0(1− q∗)
1− λ2G1(1− q∗)

v2 =
1− λ1G1(1− q∗)
1− λ2G1(1− q∗)

v3 = 1 +
q∗(1− q∗)

1− λ2G1(1− q∗)
[λ2G′1(1− q∗)− λ1G′0(1− q∗)]

which are real, positive, non-unit, and generically distinct.
Similarly, one can show that the eigenvalues of ∇φ0|(q∗,0,0)
are equal to

w1 = λ2/λ1

w2 = λ1/λ2

w3 = 1− r∗(1− r∗)
G0(r∗)G1(r∗)

[G0(r∗)G′1(r∗)−G1(r∗)G′0(r∗)]

where r∗ = 1−q∗. Thus, eigenvalues of ∇φ0|(q∗,0,0) are also
real, positive, non-unit, and generically distinct. Therefore,
all the conditions of Theorem 4 in the Appendix are satisfied,
and as a result, conditional on the event A12, the social belief
q12n converges to q∗ with positive probability. This completes
the proof.

Proposition 2 establishes that for values of h close to zero,
there are sample paths over which individuals forever remain
uncertain about the true underlying state of the world. One
can show that a similar result holds for h close to one.
The main reason for the failure of learning in such cases
is that after some point in time, agents’ actions lead to an
identification problem, where it is impossible for others to



infer the truth. This phenomenon, which Smith and Sørensen
[4] refer to as confounded learning, is different from the
herding behavior. Notice that in confounded outcomes agents
continue to use the information in their private signals
for making decisions. However, their equilibrium decision
making does not convey any further information to agents
who appear later in the sequence. On the other hand, herding
behavior is a consequence of bounded private beliefs and
happens when agents discard their private signals completely,
and solely base their decisions on the public histories. Hence,
no new information is encoded in the social beliefs as time
progresses.

We also remark that under the conditions of Proposition
2, asymptotic learning is incomplete even if λ1 is arbitrarily
close to λ2. In other words, when incentive biases of the
two types are far enough, even the slightest uncertainty in
their distributions leads to a confounding outcome with a
small positive probability. This is in contrast to Proposition
1, which shows that when incentives are sufficiently aligned,
even high levels of uncertainty about type distributions do
not preclude learning.

IV. EX POST LEARNING

The main conclusion of Proposition 2 is that uncertainty
about the distribution of preferences may lead to incomplete
learning of the payoff-relevant state θ. However, the propo-
sition does not rule out the possibility of ex post learning
on some sample paths. In other words, it is possible for
the posterior beliefs to converge to the true state on some
sample path, even though ex ante, individuals do not believe
that they will learn θ. Our next result shows that asymptotic
learning occurs with positive probability even when there is
significant heterogeneity in the preferences. Note that this is
in contrast with the asymptotic learning results in the absence
of type uncertainties, where ex ante and ex post learning
coincide.

Corollary 3: Suppose that h = 0. Then, for j ∈ {0, 1},

lim
n→∞

P(θ = j|In) = I{θ = j}

with positive probability.
Proof: The result follows from the proof of Proposition

2. Recall that equation (4) has no interior solutions when
(j, λk) = (1, λ1) or (j, λk) = (0, λ2). Therefore, conditional
on the event A11 (resp. A02), we have qn → 1 (resp. qn →
0), with probability one. Since A11 and A02 have positive
probabilities, the social beliefs converge to the truth with
some non-zero probability.

V. CONCLUSIONS

In this paper, we studied the problem of information aggre-
gation in Bayesian observational learning models with type
uncertainties. We assumed that individuals have different
incentives and are uncertain about the type distributions in
the society. We showed that complete asymptotic learning
occurs in the Perfect Bayesian Equilibrium of the game
as long as the incentives of different types are not too
far apart. On the other hand, our main result established

that learning is not robust to type distribution uncertainties
when different types have significantly different incentives.
We showed that in the presence of such uncertainties, the
equilibrium strategies lead to identification problems in the
public histories, and as a result, agents cannot extract enough
information from the actions of their predecessors to learn the
state. We remarked that this confounded learning which is a
consequence of type uncertainties is fundamentally different
from the herding behavior, which is due to the boundedness
of private signals. Finally, we showed that even though
learning is guaranteed to be incomplete ex ante, ex post
learning is still possible: there exists a positive measure set
of sample paths over which agents become certain about the
true underlying state of the world.

APPENDIX: LOCAL STABILITY OF
MARKOV-MARTINGALE PROCESSES

The Appendix contains the first-order stability criterion for
Markov-martingale stochastic processes. A more thorough
treatment of the subject can be found in Smith and Sørensen
[4] and Sørensen [9].

Consider the Markov process

yn+1 = φz(yn) with probability ψz(yn). (5)

where z ∈ {0, 1}. We say the Markov process above is a
Markov-martingale process if it satisfies

ψ0(y)φ0(y) + ψ1(y)φ1(y) = y,

for all y. Note that the above condition guarantees that
E[yn+1|y1, . . . , yn] = yn. We have the following theorem.

Theorem 4: Let y∗ be a fixed point of the Markov-
Martingale process (5). Assume that ψ0(·) and ψ1(·) are
continuous at y∗, with 0 < ψz(y∗) < 1 for z ∈ {0, 1},
and that each φz(·) is continuously differentiable at y∗. Also
assume that each ∇yφz(y∗) has distinct, real, positive, non-
unit eigenvalues. Then for any open ball B around y∗, there
exists a θ < 1 and an open ball N ⊂ B around y∗ such that

y0 ∈ N =⇒ P(θ−n‖yn − y∗‖ → 0) > 0.

The proof can be found in [4].
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