
A Distributed Newton Method for Network Utility Maximization

Ermin Wei† , Asuman Ozdaglar†, and Ali Jadbabaie‡

Abstract— Most existing work uses dual decomposition and
subgradient methods to solve Network Utility Maximization
(NUM) problems in a distributed manner, which suffer from
slow rate of convergence properties. This work develops an
alternative distributed Newton-type fast converging algorithm
for solving network utility maximization problems with self-
concordant utility functions. By using novel matrix splitting
techniques, both primal and dual updates for the Newton step
can be computed using iterative schemes in a decentralized
manner with limited information exchange. Similarly, the step-
size can be obtained via an iterative consensus-based averaging
scheme. We show that even when the Newton direction and
the stepsize in our method are computed within some error
(due to finite truncation of the iterative schemes), the resulting
objective function value still converges superlinearly to an
explicitly characterized error neighborhood. Simulation results
demonstrate significant convergence rate improvement of our
algorithm relative to the existing subgradient methods based
on dual decomposition.

I. INTRODUCTION

Most of today’s communication networks are large-scale
and comprise of agents with local information and heteroge-
neous preferences, making centralized control and coordina-
tion impractical. This motivates much interest in developing
and studying distributed algorithms for various problems,
including but not limited to Internet packets routing, collab-
oration in sensor networks, and cross-layer communication
network design. This work focuses on the rate control
problem in wireline networks, also referred to as the Network
Utility Maximization (NUM) problem in the literature (see
[5], [11], [12]). In NUM problems, the network topology
and routes are predetermined, each source in the network
has a local utility, which is a function of the rate at which
it sends information over the network. The objective is to
determine the source rates in the network that maximize the
sum of the utilities, subject to link capacity constraints. The
standard approach for solving NUM problems relies on using
dual decomposition and subgradient (or first-order) methods,
which through a dual price exchange mechanism yields
algorithms that operate on the basis of local information [10],
[12], [13]. One major shortcoming of this approach is the
slow rate of convergence.

In this paper we propose a novel Newton-type second
order method for solving the NUM problem in a distributed
manner, which is significantly faster in convergence. Our
method involves transforming the inequality constrained

This research was funded in part by National Science Foundation grants
DMI-0545910, and by the DARPA ITMANET program.

†Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology

‡Electrical and Systems Engineering University of Pennsylvania

NUM problem to an equality-constrained one through intro-
ducing slack variables and using logarithmic barrier func-
tions, and using an equality-constrained Newton method
for the reformulated problem. There are two challenges for
implementing this method in a distributed manner. First
challenge is the computation of the Newton direction. This
computation involves matrix inversion, which is both costly
and requires global information. In order to avoid this, the
linear system is solved by utilizing an iterative scheme based
on novel matrix splitting techniques and dual price exchange
scheme. The second challenge is the global information
required in the computation of the stepsize. This is resolved
by using a consensus-based local averaging scheme.1

Since our algorithm uses iterative schemes to compute
the stepsize and the Newton direction, exact computation
is not feasible. Another major contribution of our work is
to consider truncated version of these schemes and present
convergence rate analysis of the constrained Newton method
when the stepsize and the Newton direction are estimated
with some error. We show that when these errors are suffi-
ciently small, the value of the objective function converges
superlinearly to a neighborhood of the optimal objective
function value, whose size is explicitly quantified as a
function of the errors and bounds on them.

Other than the papers cited above, our paper is related to
[3] and [8]. In [3], the authors have developed a distributed
Newton-type method for the NUM problem using belief
propagation algorithm. While the belief propagation algo-
rithm is known to converge in most practical applications,
there is no provable guarantee. Our paper differs from this
by developing a standalone distributed Newton-type algo-
rithm and providing analysis for the convergence properties
thereof. Similarly, [8] considers applying distributed Newton
problem to an equality-constrained network optimization
problem under Lipschitz assumptions. Our analysis is novel
in that we have an inequality-constrained problem and we
do not impose Lipschitz condition, instead we will utilize
properties of self-concordant functions.

The rest of the paper is organized as follows: Section II de-
fines the problem formulation and equivalent transformations
thereof. Section III presents the exact constrained primal-dual
Newton method for this problem. Section IV presents a dis-
tributed iterative scheme for computing the dual Newton step
and the distributed inexact Newton-type algorithm. Section V
analyzes the rate of convergence of our algorithm. Section VI
presents simulation results to demonstrate convergence speed

1Consensus-based schemes have been used extensively in recent litera-
tures as distributed mechanisms for aligning the values held by multiple
agents, see [7], [8], [15], [16], [17]

improvement of our algorithm to the existing methods with
linear convergence rates. Section VII contains our concluding
remarks.

Due to space constraints, some of the proofs of the results
in this paper are omitted. We refer the reader to [19] for the
missing proofs.

Basic Notation and Notions:
A vector is viewed as a column vector, unless clearly stated

otherwise. We write R+ to denote the set of nonnegative
real numbers, i.e., R+ = [0,∞). We denote by xi the ith

component of a vector x. When xi ≥ 0 for all components i
of a vector x, we write x ≥ 0. For a matrix A, we write Aij
to denote the matrix entry in the ith row and jth column.
We write I(n) to denote the identity matrix of dimension
n× n. We use x′ to denote the transpose of a vector x. For
a real-valued function f : Rn → R, the gradient vector and
the Hessian matrix of f at x ∈ Rn are denoted by ∇f(x),
and ∇2f(x) respectively.

A real-valued convex function g : R→ R is said to be self-
concordant if |g′′′(x)| ≤ 2g′′(x)

3
2 for all x in its domain. For

real-valued functions in Rn, a convex function g : Rn → R is
self-concordant if it is self-concordant along every direction
in its domain, i.e., if the function g̃(t) = g(x + tv) is self-
concordant in t for all x and v. Operations that preserve self-
concordance property include summing, scaling by a factor
α ≥ 1, and composition with affine transformation (see [4]
for more details).

II. NETWORK UTILITY MAXIMIZATION PROBLEM

We consider a network represented by a set L = {1, ..., L}
of directed links of finite capacity given by c = [cl]l∈L,
where these links form a strongly connected graph. The
network is shared by a set S = {1, ..., S} of sources, each
of which transmits information along a predetermined route.
For each link l, let S(l) denote the set of sources using it. For
each source i, let L(i) denote the set of links it uses. We also
denote the nonnegative source rate vector by s = [si]i∈S . The
capacity constraint at the links can be compactly expressed
as Rs ≤ c, where R is the routing matrix of dimension L×S,
i.e.,

Rij =
{

1 if link i is on the route for source j,
0 otherwise. (1)

We associate a utility function Ui : R+ → R with
each source i, i.e., Ui(si) denotes the utility of source i
as a function of the source rate si. We assume the utility
functions are additive, such that the overall utility of the
network is given by

∑S
i=1 Ui(si). Thus the Network Utility

Maximization(NUM) problem can be formulated as

maximize
S∑
i=1

Ui(si) (2)

subject to Rs ≤ c,
s ≥ 0.

We adopt the following standard assumption.

Assumption 1: The utility functions Ui : R+ → R are
strictly concave, monotonically nondecreasing, twice contin-
uously differentiable, and self-concordant.

To facilitate development of a distributed Newton-type
method, we reformulate the problem into one with only
equality constraints, by introducing nonnegative slack vari-
ables [yl]l∈L, such that

∑S
j=1Rljsj + yl = cl for l =

1, 2 . . . L, and using logarithmic barrier functions for non-
negativity constraints. We denote the new decision variable
vector by x = ([si]′i∈S , [yl]

′
l∈L)′. Problem (2) then can be

rewritten as

minimize −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi) (3)

subject to Ax = c,

where A = [R I(L)], and µ is a nonnegative constant
coefficient for the barrier functions. We denote by p∗ the
optimal objective value for the equality constrained problem
(3). Notice that by Assumption 1 and the properties of
logarithmic functions, the objective function for problem (3),

f(x) = −
S∑
i=1

Ui(xi)− µ
S+L∑
i=1

log (xi),

is separable, strictly convex, twice continuously differen-
tiable, and has a positive definite diagonal Hessian matrix.
The function f(x) is also self-concordant for µ ≥ 1, since
it is a sum of self-concordant functions.

One can show that as the coefficient µ approaches 0, the
optimal solution of problem (3) approaches that of problem
(2) [2]. Therefore, in this paper, our goal is to investigate
iterative distributed methods for solving problem (3) for a
fixed µ. In order to preserve the self-concordant property of
the function f , which will be used to prove convergence of
our distributed algorithm, we assume the coefficient µ ≥ 1
for the rest of the paper.

III. EXACT NEWTON METHOD

We consider solving problem (3) using a (feasible start)
equality-constrained Newton method (see [4] Chapter 10). In
our iterative method, we use xk to denote the solution vector
at the kth step.

A. Feasible Initialization

To initialize the algorithm, we start with some feasible and
strictly positive vector x0 > 0. For example, one possible
such choice is given by

x0
i =

mink{ck}
S + 1

for i = 1, 2 . . . S,

x0
i+S = ci −

S∑
j=1

Rij
mink{ck}
S + 1

for i = 1, 2 . . . L,

where ck is the finite capacity for link k, S is the total number
of sources in the network, and R is routing matrix [cf. Eq.
(1)].

B. Iterative Update Rule

Given an initial feasible vector x0, the algorithm generates
the iterates by

xk+1 = xk + sk∆xk, (4)

where sk is a positive stepsize, ∆xk is the Newton direction
given as the solution to the following system of linear
equations:2(

∇2f(xk) A′

A 0

)(
∆xk

wk

)
= −

(
∇f(xk)

0

)
. (5)

In the rest of the paper, we let Hk = ∇2f(xk) for notational
convenience. The vector [wkl]l∈L are the dual variables for
the link capacity constraints. Solving for xk and wk in the
preceding system yields

∆xk = −H−1
k (∇f(xk) +A′wk), and (6)

(AH−1
k A′)wk = −AH−1

k ∇f(xk). (7)

Since the objective function f is separable in xi, the matrix
H−1
k is a diagonal matrix with entries [H−1

k]ii = (∂2f
(∂xk

i)2
)−1.

Therefore given the vector wk, the Newton direction ∆xk

can be computed using local information. However, the
computation of the vector wk at a given primal solution
xk cannot be implemented in a decentralized manner in
view of the fact that the evaluation of the matrix inverse
(AH−1

k A′)−1 requires global information. The following
section provides a distributed inexact Newton method, based
on an iterative scheme to compute the vector wk using a
decentralized scheme.

IV. DISTRIBUTED INEXACT NEWTON METHOD

Our inexact Newton method uses the same initialization
as presented in Section III-A, however, it computes the
dual variables and the primal direction using a distributed
iterative scheme with some error. The construction of these
schemes relies on novel ideas from matrix splitting, which
we introduce as follows.

A. Preliminaries on Matrix Splitting

Matrix splitting can be used to solve a system of linear
equations given by Gy = b, where G is a matrix of
dimension n×n and b is a vector of length n. Suppose that
the matrix G can be expressed as the sum of two matrices
M and N , i.e.,

G = M +N. (8)

Let y0 be an arbitrary vector of length n. A sequence {yk}
can be generated by the following iteration:

yk+1 = M−1b−M−1Nyk. (9)

It can be seen that the sequence {yk} converges as k →∞ if
and only if the spectral radius of the matrix M−1N is strictly
bounded above by 1. When the sequence {yk} converges,
its limit y∗ solves the original linear system, i.e., Gy∗ = b

2This is essentially a primal-dual method with the vectors ∆xk and wk

acting as primal and dual steps.

(see [1] and [6] for more details). Hence, the key to solve
the linear equation via matrix splitting is the bound on the
spectral radius of the matrix M−1N . Such a bound can be
obtained using the following result (see Theorem 2.5.3 from
[6]).

Theorem 4.1: Let G be a real symmetric matrix. Let M
and N be matrices such that G = M +N and assume that
both matrices M + N and M − N are positive definite.
Then the spectral radius of M−1N , denoted by ρ(M−1N),
satisfies ρ(M−1N) < 1.
By the above theorem, if G is a real, symmetric and positive
definite matrix, then one sufficient condition for the iteration
(9) to converge is that the matrix M −N is positive definite.
This can be guaranteed using Gershgorin Circle Theorem,
which we introduce next (see [18] for more details).

Theorem 4.2: (Gershgorin Circle Theorem) Let G be an
n × n matrix, and define ri(G) =

∑
j 6=i |Gij |. Then, each

eigenvalue of G lies in one of the Gershgorin sets {Γi}, with
Γi defined as disks in the complex plane, i.e.,

Γi = {z ∈ C | |z −Gii| ≤ ri(G)}.
One corollary of the above theorem is that if a matrix G is
strictly diagonally dominant, i.e., |Gii| >

∑
j 6=i |Gij |, and

Gii > 0 for all i, then the real parts of all the eigenvalues
lie in the positive half of the real line, and thus the matrix is
positive definite. Hence a sufficient condition for the matrix
M − N to be positive definite is that M − N is strictly
diagonally dominant with strictly positive diagonal entries.

B. Distributed Computation of the Dual Variables
We use the matrix splitting scheme introduced in the

preceding section to compute the dual variables wk in Eq.
(7) in a distributed manner. Let Dk be a diagonal matrix,
with diagonal entries

(Dk)ll = (AH−1
k A′)ll, (10)

and matrix Bk be given by

Bk = AH−1
k A′ −Dk. (11)

Let matrix B̄k be a diagonal matrix, with diagonal entries

(B̄k)ii =
L∑
j=1

(Bk)ij . (12)

By splitting the matrix AH−1
k A′ as the sum of Dk+ B̄k and

Bk − B̄k, we obtain the following result.
Theorem 4.3: For a given k > 0, let Dk, Bk, B̄k be the

matrices defined in Eqs. (10), (11) and (12). Let w(0) be
an arbitrary initial vector and consider the sequence {w(t)}
generated by the iteration

w(t+ 1) = (Dk + B̄k)−1(−AH−1
k ∇f(xk)) (13)

−(Dk + B̄k)−1(Bk − B̄k)w(t),

for all t ≥ 0. Then the sequence {w(t)} converges as t→∞,
and its limit is the solution to Eq. (7).

Proof: We use a matrix splitting scheme given by

(AH−1
k A′) = (Dk + B̄k) + (Bk − B̄k) (14)

si

sj

Fig. 1. In step 1, each source
sends information to the links
it uses.

si

sj

Fig. 2. In step 2, each link
sends information back to the
sources that use it.

and the iterative scheme presented in Eqs. (8) and (9) to
solve Eq. (7). For all k, both the real matrix Hk and
its inverse, H−1

k , are positive definite and diagonal. The
matrix A has full row rank and is element-wise nonnegative.
Therefore the product AH−1

k A′ is real, symmetric, element-
wise nonnegative and positive definite. We let

Qk = (Dk + B̄k)− (Bk − B̄k) = Dk + 2B̄k −Bk (15)

denote the difference matrix. By definition of B̄k [cf. Eq.
(12)], the matrix 2B̄k − Bk is diagonally dominant, with
nonnegative diagonal entries. Due to strict positivity of the
second derivatives of the logarithmic barrier functions, we
have (Dk)ii > 0 for all i. Therefore the matrix Qk is strictly
diagonally dominant. By Theorem 4.2, such matrices are pos-
itive definite. Therefore, by Theorem 4.1, the spectral radius
of the matrix (Dk + B̄k)−1(Bk − B̄k) is strictly bounded
above by 1. Hence the splitting scheme (14) guarantees the
sequence {w(t)} generated by iteration (13) to converge to
the solution of Eq. (7).

There can be many ways to split the matrix AH−1
k A′, the

particular one in Eq. (14) is chosen here due to two desirable
features. First it guarantees that the difference matrix Qk
[cf. Eq. (15)] is strictly diagonally dominant, and hence
ensures convergence of the sequence {w(t)}. Second, with
this splitting scheme, the matrix Dk+ B̄k is diagonal, which
eliminates the need for global information and computational
complexity when calculating its inverse matrix.

We next describe a computation and information exchange
procedure to show that with this splitting scheme wk can be
computed in a distributed manner. Given an arbitrary vector
of dual variables w(0), the iterates w(t) are generated by:

Step 1: Each source i sends its gradient ∇if(xk) (the ith

component of the gradient vector ∇f(xk)), Hessian
Hk
ii, routing information [Aij]j=1...L, and the vector of

dual variables [wl(t)]l∈L(i) to the links it is using, i.e.,
l ∈ L(i). The direction of information flow in this step
is depicted in Figure 1.

Step 2: Each link l computes (Dk)ll [cf. Eq. (10)], the lth

row of the matrix Bk [cf. Eq. (11)] and (B̄k)ll [cf.
Eq. (12)], and updates wl(t) according to iteration (13).
Link l then sends the updated dual variable wl(t + 1)
to the sources that use link l, i.e. i ∈ S(l). Figure 2
illustrates the direction of information flow in this step.

It can be seen that the above procedure can be imple-
mented in a distributed manner, see [19] for more details.

Remarks:
1. The sources only need to send their computed gra-

dient and Hessian information once per dual variable
calculation, since those values are constant during the
iterations.

2. The routing information only needs to be sent once in
the entire algorithm, unless there is dynamic network
topology variation.

3. This algorithm requires slightly more information ex-
change than the existing first order algorithms applied
to the NUM problem (2) (see [10], [12], [13] for more
details), in which only the sum of dual variables of links
along a source path is fed back to the source. This
mild extra information exchange, however, speeds up
the algorithm significantly, as we show in Section V.

C. Distributed Computation of the Newton Primal Direction

After obtaining the vector of dual variables wk using the
above scheme, based on Eq. (6) primal Newton direction
∆xk can be calculated in a distributed way. However, be-
cause our distributed dual variable computation involves an
iterative scheme, the exact value for wk is not available,
which implies the resulting Newton direction may violate the
equality constraint in problem (3). Therefore, the calculation
for the inexact Newton direction, which we denote by ∆x̃k,
is separated into two stages to maintain feasibility.

In the first stage, the first S components of ∆x̃k is
computed via Eq. (6) using the dual variables obtained in
the preceding section. Then in the second stage, the last L
components of ∆x̃k, corresponding to the slack variables,
are solved explicitly by the links to guarantee the condition
A∆x̃k = 0 is satisfied. This calculation can be easily
performed due to the nature of slack variables and the system
is guaranteed to have a solution because the matrix A has
full row rank and ∆x̃k can be negative.

Our distributed Newton-type algorithm is defined as: start-
ing from an initial feasible vector x0, the primal solution x
is updated as follows,

xk+1 = xk + sk∆x̃k, (16)

where sk is a positive stepsize, and ∆x̃k is the inexact
Newton direction at the kth iteration.

We refer to the exact solution to the system of equations
(5) the exact Newton direction, denoted by ∆xk. The inexact
Newton direction ∆x̃k from our algorithm is a feasible
estimate of ∆xk. At a given primal vector xk, we define
the exact Newton decrement λ(xk) as

λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. (17)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′∇2f(xk)∆x̃k. (18)

Observe that both λ(xk) and λ̃(xk) are nonnegative and well
defined, due to the fact that the matrix ∇2f(xk) is positive
definite.

Our stepsize choice will be based on the inexact Newton
decrement λ̃(xk), as we will show in Section V, this choice
can ensure rate of convergence of our algorithm. Therefore,
we first need to compute λ̃(xk) in a distributed way. Notice
that the inexact Newton decrement can be viewed as the
norm of inexact Newton direction ∆x̃k, weighted by the
Hessian matrix ∇2f(xk). Therefore, the inexact Newton
decrement λ̃(xk) can be computed via a distributed iterative
averaging consensus-based scheme. Due to space constraints,
we omit the details of the consensus algorithm, interested
readers should refer to [16], [7], [15] for further information.
We denote the computed value for λ̃(xk) from consensus
algorithm as θk. The stepsize in our algorithm is given by

sk =
{

c
θk+1

if θk ≥ 1
4 ,

1 otherwise,
(19)

where c is some positive scalar that satisfies 5
6 < c < 1. The

lower bound 5
6 is chosen here to guarantee xk > 0 for all

k, and also convergence of the algorithm, as will show in
Theorem 4.5 and Section V-C respectively.

Due to the iterative nature of our algorithm in both primal
and dual domains, in practice infinite precision of the dual
variable vector wk, primal direction ∆xk and stepsize choice
sk cannot be achieved. There are three sources of inexactness
in the algorithm. First is the iterative computation of the
dual variable wk, which in turn affects the primal Newton
direction. Second source of error stems from the way we
maintain feasibility in the algorithm. Finally, stepsize sk

depends on the value of θk, which is an inexact estimate
for λ̃(xk) obtained via an iterative scheme. We quantify the
bounds on these errors as follows.

Assumption 2: For all k, the inexact Newton direction
∆x̃k produced by our algorithm can be written as ∆xk =
∆x̃k + γ, where γ is bounded by |γ′∇2f(xk)γ| ≤
p2(∆x̃k)′∇2f(xk)∆x̃k + ε. for some positive scalars p < 1
and ε.

This assumption imposes a bound on the weighted norm
of the Newton direction error γ as a function of the weighted
norm of ∆x̃k and a constant ε. Note that without the constant
ε, we would require the error to vanish when xk is close to
the optimal solution, i.e. when ∆x̃k is very small, which is
impractical for implementation purpose.

We bound the error in the inexact Newton decrement
calculation as follows.

Assumption 3: Denote the error in the Newton decrement
calculation as τk, i.e., τk = λ̃(xk) − θk, then for all k, τk

satisfies |τk| ≤
(

1
c − 1

)
5
4 .

The constant 5
4 is chosen here to ensure our objective

function f is well defined throughout the algorithm. For the
rest of the paper, we assume the conditions in Assumptions
1-3 hold.

We now show that the stepsize choice in (19) will guaran-
tee positivity of the primal variable, i.e., xk > 0, which
in turn ensures that the logarithmic barrier functions in
the objective function of problem (3) are well defined. We
proceed by first establishing a bound on the error in the
stepsize calculation.

Lemma 4.4: Let λ̃(xk) be the inexact Newton decrement
defined in (18), θk be the computed value of λ̃(xk) and c,
satisfying 5

6 < c < 1, be the constant used in stepsize choice
(19). For θk ≥ 1

4 , the following relation holds

(2c− 1)/(λ̃(xk) + 1) ≤ c

θk + 1
≤ 1/(λ̃(xk) + 1). (20)

This lemma follows from Assumption 3 and the fact that
5
6 < c < 1. With this bound on the error in the stepsize
calculation, we can show that starting with a positive feasible
solution, the primal variable generated by our algorithm
remains positive for all k, i.e., xk > 0.

Theorem 4.5: Let x0 be a positive feasible primal vari-
able, xk be the sequence of primal variables updated using
iteration (16), i.e., xk+1 = xk + sk∆x̃k, where ∆x̃k be the
inexact Newton direction defined in Section IV-C, and sk is
defined as in (19). Then for all k, the primal variable satisfies
xk > 0.

The main step in proving the above theorem is to establish
a bound on the stepsize given by sk ≤ mini| x

k
i

∆̃xk
i

|.

V. CONVERGENCE ANALYSIS

We next present our convergence analysis for the inexact
Newton algorithm defined in Eq. (16). For the kth iteration,
we define the function f̃k : R→ R as

f̃k(t) = f(xk + t∆x̃k), (21)

which is self-concordant, because the objective function f
is self-concordant. Note that the value f̃k(0) and f̃k(sk) are
the objective function values at xk and xk+1 respectively.
Therefore f̃k(sk)− f̃k(0) measures the decrease in objective
function value at the kth iteration. Before proceeding further,
we first introduce some relevant background information
on self-concordant functions and properties of the Newton
decrement, both of which will be used extensively in our
convergence analysis.

A. Preliminaries

Using the definition of a self-concordant function, we can
relate the Newton decrement at the current step and the
next step in an unconstrained Newton method through the
following lemma. This lemma extends results in [9] and [14]
to allow inexactness in the Newton direction and reflects the
effect of the error at the current step at the Newton decrement
of the next step.

Lemma 5.1: Let f : Rn → R be a self-concordant convex
function. Consider the unconstrained optimization problem
minx∈Rn f(x). Let ∆x be the exact Newton direction at x.
Let ∆x̃ denote any direction with γ = ∆x−∆x̃, and x(t) =
x+ t∆x̃ for t ∈ [0, 1]. Let z be the exact Newton direction
at x+ ∆x̃. If λ̃ = (∆x̃′∇2f(x)∆x̃)

1
2 < 1, then we have the

following relation,

z∇2f(x+ ∆x̃)′z ≤ λ̃2

1− λ̃

√
z′∇2f(x)z + |γ′∇2f(x)′z|.

The above lemma will be used to guarantee quadratic rate
of convergence for our distributed inexact Newton method
[cf. Section V-D]. The next lemma plays a central role in

relating the suboptimality gap in the objective function value
and the exact Newton decrement (see [4] for more details).

Lemma 5.2: Let f : Rn → R be a self-concordant
function, and assume that ∆xk is the exact Newton direction
at xk. Let λ(xk) be the exact Newton decrement, defined as
λ(xk) =

√
(∆xk)′∇2f(xk)∆xk. Let p∗ denote the optimal

objective function value. If λ(xk) ≤ 0.68, then the following
relation holds,

p∗ ≥ f(xk)− λ(xk)2. (22)
The number 0.68 is obtained based on numerical sim-

ulation by [4]. The above lemmas are established for the
unconstrained Newton method. However as shown in [4],
they can also be applied for the constrained Newton method.
We will use extensively these lemmas in the subsequent
sections for rate of convergence analysis for our algorithm.

B. Basic Relations

We first introduce some key relations, which provides a
bound on the error in the Newton direction computation. This
will be used for both phases of the convergence analysis.

Lemma 5.3: Let λ̃(xk) be the inexact Newton decrement
defined in Eq. (18). Then the following relation holds for all
k:

|γ′∇2f(xk)∆x̃k| ≤ pλ̃(xk)2 + λ̃(xk)
√
ε,

where γ, p, and ε are the nonnegative scalars defined in
Assumption 2.

The preceding lemma follows from generalized Cauchy-
Schwarz inequality and Assumption 2. Using this lemma,
the following basic relation can be established, which will
be used to measure the improvement in the objective function
value.

Lemma 5.4: Let f̃k(t) and λ̃(xk) be the functions defined
in Eqs. (21) and (18) respectively. Then the following relation
holds for all k with 0 ≤ t < 1/λ̃(xk),

f̃k(t) ≤f̃k(0)− t(1− p)λ̃(xk)2 (23)

− (1−
√
ε)tλ̃(xk)− log(1− tλ̃(xk)),

where p, and ε are the nonnegative scalars defined in As-
sumption 2.

This lemma follows from the property of self-concordant
functions and Lemma 5.3. By choosing the stepsize t care-
fully, the preceding lemma can guarantee a constant lower
bound in the improvement in the objective function value at
each iteration. We present the convergence properties of our
algorithm in the following two sections.

C. Damped Convergent Phase

In this section, we consider the case when θk ≥ 1
4 and

stepsize sk = c
θk+1

[cf. Eq. (19)]. We will prove the im-
provement in the objective function value is lower bounded
by a constant. To this end, we first establish the improvement
bound for the exact stepsize choice of t = 1/(λ̃(xk) + 1).

Theorem 5.5: Let f̃k be the function defined in Eq. (21),
and λ̃(xk) be the inexact Newton decrement defined in Eq.
(18). Let p and ε be the scalars defined in Assumption 2.

Assume that 0 < p < 1
2 and 0 < ε <

(
(0.5−p)(6c−5)

4c

)2

,
where c is the constant in stepsize choice [cf. Eq. (19)].
Then for θk ≥ 1

4 and t = 1/(λ̃(xk) + 1), there exist a scalar
α > 0, such that the following relation holds,

f̃k(t)− f̃k(0) ≤ −
α(1 + p)

(
6c−5

4c

)2(
1 + 6c−5

4c

) (24)

Proof: For notational simplicity, let y = λ̃(xk) in this
proof. We will show that for any positive scalar α, such that
0 < α ≤ (1

2 − p−
4c
√
ε

6c−5)/(p+ 1), relation (24) holds. Such
α exists by the fact that ε < ((0.5−p)(6c−5)

4c)2.

Using the facts that α ≤ (1
2−p−

4c
√
ε

6c−5)/(p+1) and c > 5
6 ,

the inequality
√
ε ≤ 6c−5

4c (1
2 − p− α(1 + p)) is satisfied.

Also by Assumption 3, we have for θk ≥ 1
4 ,

y ≥ θk − (
1
c
− 1)

5
4
≥ 1

4
− (

1
c
− 1)

5
4

=
6c− 5

5c
> 0, (25)

where the strict inequality follows from the fact that c > 5
6 .

Hence the preceding two relations imply that
√
ε ≤ y(1

2 −
p− α(1 + p)). Using algebraic manipulation, this yields,

−(1− p)y − (1−
√
ε) + (1 + y)− y

2
≤ −α(1 + p)y.

From relation (25), we have y > 0. We can therefore multiply
by y and divide by 1 + y both sides of the above inequality
to obtain

− (1− p)y2

1 + y
− (1−

√
ε)y

1 + y
+ y − y2

2(1 + y)
≤ −α(1 + p)y2

1 + y
(26)

Using second order Taylor expansion on log(1+y), we have
for y ≥ 0, log(1 + y) ≤ y − y2

2(1+y) .

Using this relation in Eq. (26) yields,

−1− p
1 + y

y2 − 1−
√
ε

1 + y
y + log(1 + y) ≤ −α (1 + p)y2

1 + y
.

Substituting the value of t = 1/(y + 1), the above relation
can be rewritten as

−(1− p)ty2 − (1−
√
ε)ty − log(1− ty) ≤ −α (1 + p)y2

1 + y
.

Using relation (23) from Lemma 5.4 and definition of
y, the preceding relation implies that f̃k(t) − f̃k(0) ≤
−α(1 + p) y2

y+1 . Observe that the function h(y) = y2

y+1 is
monotonically increasing in y, and for θk ≥ 1

4 by relation
(25) we have y ≥ 6c−5

4c . Therefore

−α(1 + p)
y2

y + 1
≤ −α(1 + p)(

6c− 5
4c

)2/(1 +
6c− 5

4c
).

The preceding two relations shows the desired relation.
Note that our algorithm uses the stepsize sk = c

θk+1
for

this damped convergent phase, which is an approximation
to the stepsize t = 1/(λ̃(xk) + 1) in the previous theorem.
The error between the two is bounded by relation (20) as
shown in Lemma 4.4. We next show that with this error in
the stepsize computation, the improvement in the objective
function value in the inexact algorithm is still lower bounded

at each iteration.
Recall that f̃k(t) = f(xk + t∆x̃k), where the function

f is convex. Let β = sk

t , where t = 1/(λ̃(xk) + 1), by
convexity of the function f , we have that f(xk +βt∆xk) ≤
βf(xk + t∆xk) + (1 − β)f(xk). Therefore the objective
function value improvement is bounded by f(x+βt∆xk)−
f(xk) ≤ β(f̃k(t) − f̃k(0)). Using Lemma 4.4, we obtain
bounds on β as 2c − 1 ≤ β ≤ 1. Hence combining this
bound with Theorem 5.5, we obtain

f(xk+1)− f(xk) ≤
−(2c− 1)α(1 + p)(6c−5

4c)2

(1 + 6c−5
4c)

. (27)

Hence in the damped convergent phase we can guarantee a
lower bound on the object function value improvement at
each iteration. This bound is monotonically increasing in c,
therefore the closer the scalar c is to 1, the faster the objective
function value improves, however this also requires the error
in the inexact Newton decrement calculation, i.e., λ̃(xk)−θk,
diminishes to 0 [cf. Assumption 3].

D. Quadratically Convergent Phase

In the phase when θk < 1
4 , we show that the suboptimality

diminishes quadratically to a neighborhood of optimal solu-
tion. We proceed by first establishing the following lemma
for relating the exact and the inexact Newton decrement.

Lemma 5.6: Let p and ε be the nonnegative scalars defined
in Assumption 2. Let functions λ and λ̃ be the exact and
inexact Newton decrement defined in Eqs. (17) and (18)
respectively. Then the following relation holds:

(1− p)λ̃(xk)−
√
ε ≤ λ(xk) ≤ (1 + p)λ̃(xk) +

√
ε, (28)

for all xk in the domain of the objective function f .
The above lemma follows from Lemmas 5.3 and 5.4. We

impose the following bounds on the errors in this phase.
Assumption 4: In the quadratic convergence phase, i.e.,

when θk < 1
4 , there exists a positive scalar φ, such that

φ ≤ 0.267 and the following relations hold for all k,

(1 + p)(θk + τ) +
√
ε ≤ φ (29)

p+
√
ε ≤ 1− (4φ2)

1
4 − φ, (30)

where τ > 0 is a bound on the error in the Newton decrement
calculation, i.e., for all k, |τk| = |λ̃(xk) − θk| ≤ τ , and p
and ε are the scalars defined in Assumption 2.

The upper bound of 0.267 on φ is necessary here to guar-
antee relation (30) can be satisfied by some positive scalars p
and ε. Relation (29) will be used to guarantee the condition
λ(xk) ≤ 0.68 is satisfied, so that we can use Lemma 5.2 to
relate the suboptimality bound with the Newton decrement.
Relation (30) will be used for establishing the quadratic rate
of convergence of the objective function value.

By Assumption 4, we have λ̃(xk) = θk + τk ≤ θk + τ .
Therefore, by relations (28) and (29), we have

λ(xk) ≤ (1 + p)λ̃(xk) +
√
ε ≤ φ ≤ 0.267. (31)

Thus the condition λ(xk) ≤ 0.68 for Lemma 5.2 is satisfied.
We can therefore apply relation (22) to bound suboptimality

in our algorithm, i.e., f(xk) − p∗, using the exact Newton
decrement. We next show that under this assumption, the
objective function value f(xk) generated by our algorithm
converges quadratically to an error neighborhood of the
optimal value p∗. We will need the following lemma, which
relates the exact Newton decrement at the current and the
next step.

Lemma 5.7: Let xk be the iterates generated by the inex-
act Newton method [cf. Section IV]. Let λ and λ̃ be the exact
and inexact Newton decrement defined in Eqs. (17) and (18)
respectively. Let θk be the computed inexact value of λ̃ and
let Assumption 4 hold. Then for all k with θk < 1

4 , we have

λ(xk+1) ≤ vλ(xk)2 + ξ, (32)

where ξ = φp+
√
ε

1−p−φ−
√
ε

+ 2φ
√
ε+ε

(1−p−φ−
√
ε)2

, v = 1
(1−p−φ−

√
ε)2

and p and ε are the scalars defined in Assumption 2.
The above lemma can be established using Assumptions

2 and 4, and Lemma 5.1 and it can be used to show that our
algorithm converges quadratically to an error neighborhood
of optimality, with the error quantified as in the next theorem.

Theorem 5.8: Let λ and λ̃ be the exact and inexact
Newton decrement defined in Eqs. (17) and (18) respectively.
Let f(xk) be the objective function value at kth iteration for
the algorithm defined in Section IV and p∗ be the optimal
objective function value for problem (3). Let Assumption 4
hold. Let ξ = φp+

√
ε

1−p−φ−
√
ε
+ 2φ

√
ε+ε

(1−p−φ−
√
ε)2

, v = 1
(1−p−φ−

√
ε)2

.
Assume that for some δ ∈ [0, 1/2), ξ + vξ ≤ δ

4v . Then for
all k with θk < 1

4 , we have for m > 0,

λ(xk+m) ≤ 1
22mv

+ ξ +
δ

v

22m−1 − 1
22m , (33)

and limsupm→∞f(xk+m)− p∗ ≤ ξ + δ
2v .

Proof: We prove relation (33) by induction. First for
m = 1, by relation (30), we obtain (1−p−φ−

√
ε)4 ≥ 4φ2.

Using the definition of v, i.e., v = 1
(1−p−φ−

√
ε)2

, the above
relation implies vφ2 ≤ 1

4v . Using relation (32) and (31), we
have λ(xk+1) ≤ vλ(xk)2 + ξ ≤ vφ2 + ξ ≤ 1

4v + ξ. This
establishes relation (33) for m = 1.

We next assume that relation (33) holds for some some
m > 0, and show that it also holds for m+1. By relation (32),

we have λ(xk+m+1) ≤ v
(

1
22mv

+ ξ + δ
v

22m−1−1
22m

)2

+ ξ.
Using algebraic manipulations and the assumption that

ξ + vξ ≤ δ
4v , this yields λ(xk+m+1) ≤ 1

22m+1v
+ ξ +

δ
v

22m+1−1−1

22m+1 , thus completing the proof of relation (33).
Using relation (31), we have λ(xk) ≤ φ ≤ 0.68,

we can therefore apply Lemma 5.2, and obtain an up-
per bound on suboptimality as follows, f(xk+m) − p∗ ≤(
λ(xk+m)

)2 ≤ λ(xk+m. Combine this with relation (33), we
obtain f(xk+m)−p∗v ≤ 1

22mv
+ξ+ δ

v
22m−1−1

22m . Taking limit
superior on both sides of the preceding relation establishes
the final result.

The above theorem shows that the objective function value
f(xk) generated by our algorithm converges quadratically to
a neighborhood of the optimal value p∗, with the neighbor-
hood of size ξ + δ

2v , where ξ = φp+
√
ε

1−p−φ−
√
ε

+ 2φ
√
ε+ε

(1−p−φ−
√
ε)2

,

10
0

10
1

10
2

10
3

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

Number of Iterations

U
til

ity
 F

un
ct

io
n

V
al

ue

Utility Value vs Number of Iterations

Existing First Order Method
Newton

Fig. 3. One sample simulation of distributed Newton algorithm vs existing
first order methods on a log scaled graph on a network consisting of 50
nodes.

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

Trial Number

N
um

be
r

of
 It

er
at

io
ns

, L
og

−
sc

al
e

Number of Iterations for Two Algorithms 50 Random Trials

Distributed Newton Method
Subgradient Method

Fig. 4. Distributed Newton and existing first order methods are imple-
mented over 50 randomly generated networks.

v = 1
(1−p−φ−

√
ε)2

, and the condition ξ+vξ ≤ δ
4v is satisfied.

Note that with exact Newton algorithm, we have p = ε = 0,
which implies ξ = 0 and we can choose δ = 0, which in
turn leads to the size of the error neighborhood being 0. This
confirms with the fact that exact Newton algorithm converges
quadratically to the optimal objective function value.

VI. SIMULATION RESULTS

Our simulation results demonstrate that the decentralized
Newton method significantly outperforms the existing meth-
ods in terms of number of iterations. Here we count both the
primal and dual iterations for our Newton method. Figure
3 shows the utility value after each iteration of Newton
method and existing subgradient method on log scale for
a network size of 50. The results shows newly developed
method exhibits significant advantage over the traditional
first order ones.

To see more generalized performance over random net-
works, distributed Newton and conventional first order meth-
ods are both implemented over 50 randomly generated
networks of random size with the mean of 40, and random
number of sources, with the mean of 10. Simulation results
are presented in Figure 4 on a log scale. Overall distributed

Newton method is about 3 order of magnitude faster than
subgradient methods.

VII. CONCLUSIONS

This paper develops a distributed Newton-type algorithm
for network utility maximization problems. We show that the
computation of the dual Newton step can be implemented
in a decentralized manner using novel matrix splitting tech-
nique. We also show that even when the Newton direction
and stepsize are computed with some error, the objective
function value converges superlinearly a neighborhood of
the optimal value. Simulation results also indicates signif-
icant improvement over traditional distributed algorithms
for network utility maximization problems. Possible future
directions include to analyze the relationship between the
rate of converge and the underlying topology of the network
and to give explicit bounds on iteration count for the entire
algorithm.

REFERENCES

[1] A. Berman and R. J. Plemmons. Nonnegative Matrices in the
Mathematical Sciences. Academic Press, New York, 1979.

[2] D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[3] D. Bickson, Y. Tock, A. Zyrnnis, S. Boyd, and D. Dolev. Distributed

large scale network utility maximization. Proceedings of the 2009
IEEE international conference on Symposium on Information Theory,
2, 2009.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J.C. Doyle. Layering
as optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, 95(1):255–312, 2007.

[6] R. Cottle, J. Pang, and R. Stone. The Linear Complementarity
Problem. Academic Press, 1992.

[7] A. Jadbabaie, J. Lin, and S. Morse. Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions
on Automatic Control, 48(6):988–1001, 2003.

[8] A. Jadbabaie, A. Ozdaglar, and M. Zargham. A Distributed Newton
method for network optimization. Proc. of CDC, 2009.

[9] F. Jarre. Interior-point methods for convex programming. Applied
Mathematics and Optimization, 26:287–311, 1992.

[10] F. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[11] F. P. Kelly, A. K. Maulloo, and D. K. Tan. Rate control for
communication networks: shadow prices, proportional fairness, and
stability. Journal of the Operational Research Society, 49:237–252,
1998.

[12] S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic
algorithm and convergence. IEEE/ACM Transaction on Networking,
7(6):861–874, 1999.

[13] A. Nedic and A. Ozdaglar. Convex Optimization in Signal Processing
and Communications, chapter 10 Cooperative distributed multi-agent
optimization. Eds., Eldar, Y. and Palomar, D., Cambridge University
Press, 2008.

[14] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms
in Convex Programming. SIAM, 2001.

[15] A. Olshevsky and J. Tsitsiklis. Convergence speed in distributed
consensus and averaging. SIAM Journal on Control and Optimization,
48(1):33–35, 2009.

[16] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Com-
putation. PhD thesis, Dept. of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, 1984.

[17] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asyn-
chronous deterministic and stochastic gradient optimization algo-
rithms. IEEE Transactions on Automatic Control, 31(9):803–812,
1986.

[18] R. Varga. Gershgorin and His Circles. Springer, 2004.
[19] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method

for network utility maximization. LIDS Report 2832, 2010.

