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Abstract

In this paper, we use abstract convexity results to study augmented dual prob-
lems for (nonconvex) constrained optimization problems. We consider a nonin-
creasing function f (to be interpreted as a primal or perturbation function) that
is lower semicontinuous at 0 and establish its abstract convexity at 0 with respect
to a set of elementary functions defined by nonconvex augmenting functions. We
consider three different classes of augmenting functions: nonnegative augment-
ing functions, bounded-below augmenting functions, and unbounded augmenting
functions. We use the abstract convexity results to study augmented optimization
duality without imposing boundedness assumptions.

Key words: Abstract convexity, augmenting functions, augmented Lagrangian functions,
asymptotic directions, duality gap.

1 Introduction

The analysis of convex optimization duality relies on using linear separation results from
convex analysis on the epigraph of the perturbation (primal) function of the optimization
problem. This translates into dual problems constructed using traditional Lagrangian
functions, which is a linear combination of the objective and constraint functions (see,
for example, Rockafellar [13], Hiriart-Urruty and Lemarechal [8], Bonnans and Shapiro
[5], Borwein and Lewis [6], Bertsekas, Nedić, and Ozdaglar [3, 4], Auslender and Teboulle
[1]). However, linear separation results are not applicable for nonconvex optimization
problems, and some recent literature considered augmented dual problems (see for ex-
ample Rockafellar and Wets [14], Huang and Yang [9]). An augmented dual problem
is constructed using an augmented Lagrangian function, which includes an augmenting
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function representing a nonlinear penalty for violating the constraints of the problem.
Geometrically, this corresponds to using nonlinear surfaces to separate the epigraph
of the perturbation function from a point that does not belong to the closure of the
epigraph.

The nonlinear separation results have an intimate connection to the more general
notion of abstract convexity, which has proven to be a suitable unifying framework
for the study of augmented Lagrangian theory in a general setting (see Burachik and
Rubinov [7], Rubinov, Glover, and Yang [15], Rubinov [16], Rubinov, Huang, and Yang
[17], Rubinov and Yang [18]). In previous work, the augmented optimization duality is
investigated under some boundedness assumptions.

Nedić and Ozdaglar presented a geometric approach and a taxonomy of nonlinear
separation results that can be used to study augmented optimization duality in [10]
and [11]. There, dual problems are constructed using convex augmenting functions, and
necessary and sufficient conditions are provided for zero duality gap without explicitly
imposing any compactness assumptions.

In this paper, motivated by the development in [10] and [11], we present some zero
duality gap results for augmented dual problems constructed with nonconvex augmenting
functions, without imposing any boundedness assumptions. We establish these results by
using the tools of abstract convexity and some asymptotic properties of the perturbation
function of the original constrained problem. In general, the notion of abstract convexity
is defined in terms of a prespecified set of elementary functions. More precisely, a function
f is said to be abstract convex with respect to a given set of elementary functions H if
f can be represented as the upper envelope of some functions of the set H (cf. Rubinov
[16]). Here, we consider two sets of elementary functions denoted by Hσ and H̄σ, which
are specified in terms of an augmenting function σ. In particular, given an augmenting
function σ that satisfies certain properties, we define the sets Hσ and H̄σ respectively
by:

Hσ = {h | h(x) = −rσ(x) + c, x ∈ Rn, r ≥ 0, c ∈ R},

H̄σ =

{
h | h(x) = −1

r
σ(rx) + c, x ∈ Rn, r > 0, c ∈ R

}
.

We first analyze abstract convexity properties of the perturbation function with
respect to the set of elementary functions Hσ or H̄σ. We study three different classes of
augmenting functions: nonnegative augmenting functions, bounded-below augmenting
functions, and unbounded augmenting functions (see Figure 1). We establish that the
perturbation function p is abstract convex at 0 with respect to Hσ if σ is a nonnegative
augmenting function, and is abstract convex at 0 with respect to H̄σ if σ is a bounded-
below or unbounded augmenting function. Contrary to previous studies, we do not
assume that the perturbation function is bounded from below in our analysis, but instead
use assumptions related to the asymptotic directions of the epigraph of the perturbation
function.

We next define the augmented dual problem with arbitrary nonincreasing dualiz-
ing parametrizations. We establish an equivalent characterization of zero duality gap
between the primal and augmented dual problems in terms of the relation between the
values of the perturbation function and its biconjugate at 0. Using a classical result from
abstract convex analysis, i.e., the Fenchel-Moreau Theorem, we translate the abstract
convexity results on the perturbation function to sufficient conditions for zero duality
gap.
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Figure 1: General augmenting functions σ(u) for u ∈ R: The figure to the left illustrates
a bounded-below augmenting function, e.g., σ(u) = a(eu − 1) with a > 0. The figure
to the right illustrates an unbounded augmenting function, e.g., σ(u) = − log(1− u) for
u < 1.

The rest of the paper is organized as follows: In Section 2 we present some prelimi-
naries from abstract convexity that will be used in our analysis. Section 3 contains our
main results and provides various abstract convexity results with respect to sets of ele-
mentary functions parametrized by augmenting functions that satisfy certain properties.
Section 4 introduces the augmented dual problem and provides sufficient conditions for
zero duality gap between the primal problem and the augmented dual problem. Section
5 contains our concluding remarks.

2 Notation, Terminology, and Basics

Consider the n-dimensional space Rn with the coordinate-wise order relation ≥. We
view a vector as a column vector, and we denote the inner product of two vectors x and
y by x′y. We denote the nonpositive orthant in Rn by Rn

−, i.e., Rn
− = {x ∈ Rn | x ≤ 0}.

For any vector x ∈ Rn, we can write

x = x+ + x− with x+ ≥ 0 and x− ≤ 0,

where the vector x+ is the component-wise maximum of x, i.e.,

x+ = (max{0, x1}, ..., max{0, xn})′ ,
and the vector x− is the component-wise minimum of x, i.e.,

x− = (min{0, x1}, ..., min{0, xn})′ .
For a function f : Rn 7→ [−∞,∞], we denote the epigraph of f by epi(f), i.e.,

epi(f) = {(x,w) ∈ Rn × R | f(x) ≤ w}.
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We consider sets of functions defined on Rn with the pointwise order relations: f1 ≥
f2 means that f1(x) ≥ f2(x) for all x ∈ Rn. We say that a function f : Rn → [−∞,∞]
is non-increasing if x ≥ y implies f(x) ≤ f(y).

Definition 1 (Abstract Convexity at a Point) Let H be a set of extended real-valued
proper functions h : Rn 7→ (−∞,∞]. We say that a function f : Rn 7→ (−∞,∞] is
abstract convex at a point x̄ ∈ Rn with respect to H when the following relation holds

f(x̄) = sup{h(x̄) | h ∈ H, h ≤ f}.

In this paper, we are interested in abstract convexity with respect to special classes
of functions

Hσ = {h | h(x) = −rσ(x) + c, x ∈ Rn, r ≥ 0, c ∈ R} (1)

or

H̄σ =

{
h | h(x) = −1

r
σ(rx) + c, x ∈ Rn, r > 0, c ∈ R

}
(2)

specified in terms of an augmenting function σ. In particular, we define an augmenting
function as follows:

Definition 2 A function σ : Rn 7→ (−∞,∞] is called an augmenting function if it is
not identically equal to 0 and it takes the zero value at the origin, i.e.,

σ 6= 0 and σ(0) = 0.

This definition of an augmenting function is motivated by the convex augmenting
functions introduced by Rockafellar and Wets [14] (see Definition 11.55); however note
that we do not restrict ourselves to convex functions here. By definition, an augmenting
function is a proper function.

When establishing abstract convexity results for functions that are unbounded from
below, we use the notion of an asymptotic cone of a set. In particular, the asymptotic
cone of a set C is denoted by C∞ and is defined as follows.

Definition 3 (Asymptotic Cone) The asymptotic cone C∞ of a nonempty set C is
given by

C∞ = {d | λkxk → d for some {xk} ⊂ C and {λk} ⊂ R with λk ≥ 0, λk → 0} .

A direction d ∈ C∞ is referred to as a asymptotic direction of the set C.

3 Main Results

In this section, we discuss sufficient conditions on augmenting functions σ and the func-
tion f that guarantee abstract convexity of f with respect to a set Hσ or H̄σ, defined
in (1) or (2), respectively. We establish these sufficient conditions by separating the
epigraph epi(f) of the function f and the half-line {(0, w) | w ≤ f(0) − ε} for some
ε > 0. The separation of these two sets is realized through some augmenting function σ.
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For the separation results, an important characteristic of the function f is the“bottom-
shape” of the epigraph of f . In particular, it is desirable that f does not decrease faster
than a linear function i.e., the ratio of f(x) and ‖x‖-values is asymptotically finite, as
f(x) decreases to infinity. To characterize this, we use the notion of asymptotic direc-
tions and asymptotic cone of a nonempty set (see Section 2). In particular, we impose
the condition that the direction (0,−1) is not an asymptotic direction of epi(f), i.e.,

(0,−1) /∈ (epi(f))∞.

More precisely, we consider functions f that satisfy the following assumption.

Assumption 1 Let f : Rn 7→ (−∞,∞] be a function with the following properties:

(a) The function f is nonincreasing and the value f(0) is finite.

(b) The function f is lower semicontinuous at x = 0, i.e., for all sequences {xk} ⊂ Rn

with xk → 0, we have
f(0) ≤ lim inf

k→∞
f(xk).

(c) The vector (0,−1) is not an asymptotic direction of epi(f), i.e.,

(0,−1) /∈ (epi(f))∞.

As mentioned earlier, Assumption 1(c) plays a crucial role in establishing the sep-
aration of the epigraph of the function f and the half-line {(0, w) | w ≤ f(0) − ε} for
some ε > 0. To provide more insights into Assumption 1(c), we give a simpler equivalent
characterization of the relation (0,−1) /∈ (epi(f))∞ in the following lemma.

Lemma 1 Let f : Rn 7→ (−∞,∞] be a function. Then (0,−1) /∈ (epi(f))∞ if and only
if for any sequence {xk} ⊂ Rn with f(xk) → −∞, we have

lim inf
k→∞

f(xk)

‖xk‖ > −∞.

Proof. Assume first that (0,−1) /∈ (epi(f))∞. Furthermore, assume to arrive at a
contradiction that there exists a sequence {xk} ⊂ Rn with f(xk) → −∞ such that

lim inf
k→∞

f(xk)

‖xk‖ = −∞.

By restricting attention to a subsequence if necessary, we can assume without loss of

generality that f(xk)
‖xk‖ → −∞. Note that we can write

(
xk

|f(xk)| ,
f(xk)

|f(xk)|
)

=

(
xk

‖xk‖
‖xk‖
|f(xk)| ,

f(xk)

|f(xk)|
)

.
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Taking the limit as k →∞ in the preceding relation and using the fact f(xk)
‖xk‖ → −∞, we

obtain

lim
k→∞

(
xk

|f(xk)| ,
f(xk)

|f(xk)|
)

= (0,−1).

Since 1
|f(xk)| → 0, it follows by the definition of an asymptotic direction (cf. Definition

3) that (0,−1) ∈ (epi(f))∞ − a contradiction.
Assume next that (0,−1) ∈ (epi(f))∞. We show that there exists a sequence {xk}

with f(xk) → −∞ such that

lim inf
k→∞

f(xk)

‖xk‖ = −∞.

Since (0,−1) ∈ (epi(f))∞, by the definition of an asymptotic cone (cf. Definition 3),
there exist a scalar sequence {λk} with λk ≥ 0 and λk → 0, and a vector sequence
{(xk, yk)} ⊂ epi(f) such that

lim
k→∞

λk(xk, yk) = (0,−1).

Since λk → 0 and λkyk → −1, we have that

lim
k→∞

yk = lim
k→∞

−1

λk

= −∞.

Furthermore, since λkxk → 0 and λkyk → −1, we obtain

lim inf
k→∞

λkyk

λk‖xk‖ = lim inf
k→∞

yk

‖xk‖ = −∞.

Because {(xk, yk)} ⊂ epi(f), we have f(xk) ≤ yk, which together with the preceding

relation yields lim infk→∞
f(xk)
‖xk‖ = −∞, thus completing the proof. Q.E.D.

By using Lemma 1, we can see that (0,−1) is not an asymptotic direction of f when
one of the following holds:

(1) The function f is bounded from below over Rn, i.e., infx∈Rn f(x) > −∞,

(2) For some vectors ai ∈ Rn and scalars bi, i = 1, . . . , r, the function f is given by

f(x) = max
1≤i≤r

{a′ix + bi} for all x,

or
f(x) = min

1≤i≤r
{a′ix + bi} for all x.

(3) For some vectors ai ∈ Rn and scalars bi, i = 1, . . . , r, the function f satisfies

f(x) ≥ max
1≤i≤r

{a′ix + bi} for all x,

or
f(x) ≥ min

1≤i≤r
{a′ix + bi} for all x.
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3.1 Nonnegative Augmenting Functions

Here, we establish an abstract convexity result for an augmenting function σ that is
nonnegative. In particular, we consider a class of augmenting functions σ satisfying the
following assumption.

Assumption 2 Let σ be an augmenting function with the following properties:

(a) The function σ is nonnegative,

σ(x) ≥ 0 for all x.

(b) For any sequence {xk} ⊂ Rn, the convergence of σ(xk) to zero implies the conver-
gence of the nonnegative part of the sequence {xk} to zero, i.e.,

σ(xk) → 0 ⇒ x+
k → 0.

(c) For any sequence {xk} ⊂ Rn and any positive scalar sequence {λk} with λk →∞,

if the relation limk→∞
σ(λkxk)

λk
= 0 holds, then the nonnegative part of the sequence

{xk} converges to zero, i.e.,

lim
k→∞

σ(λkxk)

λk

= 0 with {xk} ⊂ Rn and λk →∞ ⇒ x+
k → 0.

It can be seen that Assumption 2(b) is equivalent to the following condition: for all
δ > 0, there holds

inf
{x | dist(x,Rn

−)≥δ}
σ(x) > 0. (3)

To see this, assume first that Assumption 2(b) holds and assume to arrive at a contra-
diction that there exists some δ > 0 such that

inf
{x | dist(x,Rn

−)≥δ}
σ(x) = 0.

This implies that there exists a sequence {xk} such that σ(xk) → 0 and ‖x+
k ‖ ≥ δ for

all k, contradicting Assumption 2(b). Conversely, assume that condition (3) holds. Let
{xk} be a sequence with σ(xk) → 0, and assume that lim supk→∞ ‖x+

k ‖ > 0. This implies
the existence of some δ > 0 such that along a subsequence, we have dist(xk,Rn

−) > δ for
all k sufficiently large. Since σ(xk) → 0, this contradicts condition (3).

Assumption 2(b) is related to the peak at zero condition, which can be expressed as
follows: for all δ > 0, there holds

inf
{x | ‖x‖≥δ}

σ(x) > 0.

This condition was studied by Rubinov et al. [17] to provide zero duality gap results for
arbitrary dualizing parametrizations.

The following are some examples of augmenting functions σ that satisfy Assumption
2:
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σ(x) = ‖x‖γ
p or σ(x) = ‖x+‖γ

p (4)

for some scalars γ ≥ 1 and p with 0 < p ≤ ∞, where ‖x‖p = (
∑n

i=1 |xi|p)
1
p for p < ∞

and ‖x‖∞ = maxi |xi| for p = ∞;

σ(x) = ‖Ax‖γ
p or σ(x) = ‖Ax+‖γ

p (5)

for a scalar γ ≥ 1 and an m by n matrix A with a full column rank;

σ(x) = (x′Qx)γ or σ(x) =
(
(x+)′Qx+

)γ
(6)

for a scalar γ ≥ 1/2 and a symmetric positive definite n by n matrix Q;

σ(x) = |x1|γ1|x2|γ2 · · · |xn|γn + σ1(x) (7)

or
σ(x) = (x+

1 )γ1(x+
2 )γ2 · · · (x+

n )γn + σ1(x) (8)

for some scalars γ1 ≥ 0, . . . , γn ≥ 0 with γ1 + · · · + γn ≥ 1, and for a function σ1 being
one of the preceding examples of augmenting functions given in Eqs. (4)–(6).

We note that the augmenting functions given in Eqs. (4)–(5) are nonconvex for
p < 1. Furthermore, the augmenting functions of the form as in Eqs. (7)–(8) can also be
nonconvex. As a simple example, consider the case when σ1 is convex but γ1 = γ2 = 1/2
and γ3 = . . . = γn = 0, in which case the functions x → |x1|γ1|x2|γ2 · · · |xn|γn and
x → (x+

1 )γ1(x+
2 )γ2 · · · (x+

n )γn are nonconvex.

We now provide an abstract convexity result for augmenting functions that satisfy
Assumption 2.

Proposition 1 Let f : Rn 7→ (−∞,∞] be a function that satisfies Assumption 1 and
let σ be an augmenting function that satisfies Assumption 2. Then, for every ε > 0,
there exist scalars c and r̄ > 0 such that

f(x) + rσ(x) ≥ c > f(0)− ε for all x ∈ Rn and all r ≥ r̄. (9)

As a particular consequence of the preceding relation, we have that the function f is
abstract convex at x = 0 with respect to Hσ, where

Hσ = {h | h(x) = −rσ(x) + c, x ∈ Rn, r ≥ 0, c ∈ R} .

Proof. Assume to arrive at a contradiction that relation (9) does not hold. Then, there
exist a positive scalar sequence {rk} with rk → ∞ and a vector sequence {xk} ⊂ Rn

such that
f(xk) + rkσ(xk) ≤ f(0)− ε for all k. (10)

Because of the nonnegativity of σ [cf. Assumption 2(a)], it follows that

lim inf
k→∞

f(xk) ≤ f(0)− ε. (11)
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We now consider separately the following two cases: the sequence {f(xk)} is bounded
from below, and {f(xk)} is unbounded from below.

Case 1: The sequence {f(xk)} is bounded from below.

We have f(xk) ≥ K for some scalar K and for all k. Then, from Eq. (10) and the
nonnegativity of the augmenting function σ [cf. Assumption 2(a)], it follows that

0 ≤ σ(xk) ≤ f(0)− ε− f(xk)

rk

≤ f(0)− ε−K

rk

for all k.

Since rk →∞, the preceding relation implies that σ(xk) → 0. Therefore, by Assumption
2(b), it follows that x+

k → 0. Furthermore, since xk ≤ x+
k and the function f is nonin-

creasing [cf. Assumption 1(a)], we have f(x+
k ) ≤ f(xk) for all k. Combining these with

the assumption that f is lower semicontinuous at 0 [cf. Assumption 1(b)], we obtain

f(0) ≤ lim inf
k→∞

f(x+
k ) ≤ lim inf

k→∞
f(xk).

Since lim infk→∞ f(xk) ≤ f(0)− ε [cf. Eq. (11)], this yields a contradiction.

Case 2: The sequence {f(xk)} is unbounded from below.

Assume without loss of generality that f(xk) → −∞, and consider the sequence {x+
k }.

Since xk ≤ x+
k for all k and the function f is nonincreasing, it follows that f(x+

k ) ≤ f(xk)
for all k. Because f(xk) → −∞, we have f(x+

k ) → −∞.
Suppose that the sequence {x+

k } is bounded. Then, we have

lim inf
k→∞

f(x+
k )

‖x+
k ‖

= −∞.

By Lemma 1, it follows that (0,−1) ∈ (epi(f))∞, thus contradicting Assumption 1(c).
Hence, the sequence {x+

k } must be unbounded, and without loss of generality, we may
assume that ‖x+

k ‖ → ∞ with ‖x+
k ‖ > 0 for all k.

Dividing by ‖x+
k ‖ in Eq. (10) and using the fact f(x+

k ) ≤ f(xk) for all k, we obtain

f(x+
k )

‖x+
k ‖

+ rk
σ(xk)

‖x+
k ‖

≤ f(0)− ε

‖x+
k ‖

.

By rearranging the terms and taking the limit superior as k → ∞ in the preceding
relation, we obtain

lim sup
k→∞

rk
σ(xk)

‖x+
k ‖

≤ − lim inf
k→∞

f(x+
k )

‖x+
k ‖

.

By Assumption 1(c) and Lemma 1, we have lim infk→∞
f(x+

k )

‖x+
k ‖

> −∞, implying that

lim sup
k→∞

rk
σ(xk)

‖x+
k ‖

< ∞.
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Since rk →∞, it further follows that lim supk→∞
σ(xk)

‖x+
k ‖
≤ 0, which by the nonnegativity

of the augmenting function σ [cf. Assumption 2(a)] yields σ(xk)

‖x+
k ‖
→ 0. Therefore,

lim
k→∞

σ(λkvk)

λk

= 0 with λk = ‖x+
k ‖ and vk =

xk

‖x+
k ‖

,

where ‖x+
k ‖ → ∞. Hence, from Assumption 2(c) and the preceding relations, we have

v+
k → 0, implying that

x+
k

‖x+
k ‖
→ 0 - a contradiction. Hence, relation (9) holds.

As a particular consequence of relation (9), we have that

f(x) + r̄σ(x) ≥ c > f(0)− ε for all x ∈ Rn.

By letting hr̄,c(x) = −r̄σ(x) + c for all x, the inequality f(x) + r̄σ(x) ≥ c for all x is
equivalent to the following

f(x) ≥ hr̄,c(x) for all x ∈ Rn,

i.e., hr̄,c ≤ f with hr̄,c ∈ Hσ, where Hσ = {h | h(x) = −rσ(x) + c, x ∈ Rn, r ≥ 0, c ∈ R}.
By the definition of the augmenting function [cf. Definition 2], we have σ(0) = 0, imply-
ing that hr̄,c(0) = c. Hence, the relation c > f(0)− ε is equivalent to hr̄,c(0) > f(0)− ε.
Since such scalars r̄ and c exist for any ε > 0, it follows that f is abstract convex at
x = 0 with respect to Hσ. Q.E.D.

We note here that the analysis of Case 1 in the preceding proof does not use As-
sumption 2(c) on augmenting functions.

3.2 Bounded-Below Augmenting Functions

In this section, we establish an abstract convexity result for an augmenting function σ
that is bounded from below but not necessarily nonnegative. In particular, we consider
augmenting functions σ satisfying the following assumption.

Assumption 3 Let σ be an augmenting function with the following properties:

(a) The function σ is bounded-below, i.e.,

σ(x) ≥ σ0 for some scalar σ0 and for all x.

(b) For any sequence {xk} ⊂ Rn and any positive scalar sequence {λk} with λk →∞,

if the relation lim supk→∞
σ(λkxk)

λk
< ∞ holds, then the nonnegative part of the

sequence {xk} converges to zero, i.e.,

lim sup
k→∞

σ(λkxk)

λk

< ∞ with {xk} ⊂ Rn and λk →∞ ⇒ x+
k → 0.
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Clearly, the examples of nonnegative augmenting functions given in Eqs. (4)–(8)
satisfy Assumption 3(a) with σ0 = 0. Furthermore, it can be seen that these functions
also satisfy Assumption 3(b). Also, the following is an augmenting function that satisfies
Assumption 3:

σ(x) = a1(e
x1 − 1) + · · ·+ an(exn − 1)

for some scalars a1 > 0, . . . , an > 0.

We next provide an abstract convexity result for bounded-below augmenting func-
tions that satisfy Assumption 3.

Proposition 2 Let f : Rn 7→ (−∞,∞] be a function that satisfies Assumption 1. Let
σ be an augmenting function that satisfies Assumption 3. Then, for every ε > 0, there
exist scalars c and r̄ > 0 such that

f(x) +
1

r
σ(rx) ≥ c > f(0)− ε for all x ∈ Rn and all r ≥ r̄. (12)

As a particular consequence, we have that the function f is abstract convex at x = 0
with respect to H̄σ, where

H̄σ =

{
h | h(x) = −1

r
σ(rx) + c, x ∈ Rn, r > 0, c ∈ R

}
.

Proof. Assume to arrive at a contradiction that relation (12) does not hold. Then, there
exist a positive scalar sequence {rk} with rk → ∞ and a vector sequence {xk} ⊂ Rn

such that

f(xk) +
1

rk

σ(rkxk) ≤ f(0)− ε for all k. (13)

Because σ(x) ≥ σ0 [cf. Assumption 3(a)] and rk →∞, it follows that

lim inf
k→∞

f(xk) ≤ f(0)− ε. (14)

Now, consider separately the following two cases: the sequence {f(xk)} is bounded
from below, and {f(xk)} is unbounded from below.

Case 1: The sequence {f(xk)} is bounded from below.

We have f(xk) ≥ K for some scalar K and all k. Then, from Eq. (13) it follows that

lim sup
k→∞

σ(rkxk)

rk

≤ lim sup
k→∞

(
f(0)− ε− f(xk)

)
≤ f(0)− ε−K < ∞.

By Assumption 3(b), the preceding relation implies that x+
k → 0. Furthermore, since

xk ≤ x+
k and the function f is nonincreasing, we have f(x+

k ) ≤ f(xk) for all k. Com-
bining these relations with the assumption that f is lower semicontinuous at x = 0 [cf.
Assumption 1(b)], we obtain

f(0) ≤ lim inf
k→∞

f(x+
k ) ≤ lim inf

k→∞
f(xk).
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Since lim infk→∞ f(xk) ≤ f(0)− ε [cf. Eq. (14)], this yields a contradiction.

Case 2: The sequence {f(xk)} is unbounded from below.

Assume without loss of generality that f(xk) → −∞, and consider the sequence {x+
k }.

Since xk ≤ x+
k for all k and the function f is nonincreasing, it follows that f(x+

k ) ≤ f(xk)
for all k. Because f(xk) → −∞, we have f(x+

k ) → −∞.
Suppose that the sequence {x+

k } is bounded. Then, we have

lim inf
k→∞

f(x+
k )

‖x+
k ‖

= −∞.

By Lemma 1, it follows that (0,−1) ∈ (epi(f))∞, thus contradicting Assumption 1(c).
Hence, the sequence {x+

k } must be unbounded, and without loss of generality, we may
assume that ‖x+

k ‖ → ∞ with ‖x+
k ‖ > 0 for all k.

By using the fact f(x+
k ) ≤ f(xk) for all k, and dividing by ‖x+

k ‖ in Eq. (13), we
obtain

f(x+
k )

‖x+
k ‖

+
σ(rkxk)

rk‖x+
k ‖

≤ f(0)− ε

‖x+
k ‖

. (15)

Since f(x+
k ) → −∞, by Assumption 1(c) and Lemma 1, we have lim infk→∞

f(x+
k )

‖x+
k ‖

> −∞.

By rearranging the terms in Eq. (15) and by taking the limit superior as k → ∞, we
further obtain

lim sup
k→∞

σ(rkxk)

rk‖x+
k ‖

≤ − lim inf
k→∞

f(x+
k )

‖x+
k ‖

< ∞.

Therefore,

lim sup
k→∞

σ(λkvk)

λk

< ∞ with λk = rk‖x+
k ‖ and vk =

xk

‖x+
k ‖

.

Since λk → ∞, by Assumption 3(b) we have v+
k → 0, implying that

x+
k

‖x+
k ‖

→ 0 - a

contradiction. Thus, relation (12) holds.
As a special case of relation (12), we have that

f(x) +
1

r̄
σ(r̄x) ≥ c > f(0)− ε for all x ∈ Rn.

Let hr̄,c(x) = −1
r̄
σ(r̄x) + c for all x. Then, the inequality f(x) + 1

r̄
σ(r̄x) ≥ c for all x is

equivalent to the following

f(x) ≥ hr̄,c(x) for all x ∈ Rn,

i.e., hr̄,c ≤ f with hr̄,c ∈ H̄σ for H̄σ =
{
h | h(x) = −1

r
σ(rx) + c, x ∈ Rn, r > 0, c ∈ R}

.
By the definition of the augmenting function [cf. Definition 2], we have σ(0) = 0, so that
hr̄,c(0) = c. Thus, the relation c > f(0) − ε is equivalent to hr̄,c(0) > f(0) − ε. Since
such scalars r̄ and c exist for any ε > 0, it follows that f is abstract convex at x = 0
with respect to H̄σ. Q.E.D.
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3.3 Unbounded Augmenting Functions

In this section, we present an abstract convexity result for an augmenting function σ that
is unbounded from below. In particular, we consider a class of augmenting functions σ
satisfying the following assumption.

Assumption 4 Let σ be an augmenting function with the following properties:

(a) For any sequence {xk} ⊂ Rn with xk → x̄ and for any positive scalar sequence

{λk} with λk →∞, the relation lim supk→∞
σ(λkxk)

λk
< ∞ implies that the vector x̄

is nonpositive, i.e.,

lim sup
k→∞

σ(λkxk)

λk

< ∞ with xk → x̄ and λk →∞ ⇒ x̄ ≤ 0.

(b) For any sequence {xk} ⊂ Rn with xk → x̄ and x̄ ≤ 0, and for any positive scalar
sequence {λk} with λk →∞, we have

lim inf
k→∞

σ(λkxk)

λk

≥ 0.

Here, we note that the augmenting functions given in Eqs. (4)–(8) satisfy Assumption
4, some of which are nonconvex as discussed there. Also, Assumption 4 is satisfied for
an augmenting function σ of the form (see Nedić and Ozdaglar [11]):

σ(x) =
n∑

i=1

θ(xi)

with the following choices of the scalar function θ:

θ(t) =

{− log(1− t) t < 1,
+∞ t ≥ 1,

(cf. modified barrier method of Polyak [12]),

θ(t) =

{
t

1−t
t < 1,

+∞ t ≥ 1,

(cf. hyperbolic modified barrier method of Polyak [12]),

θ(t) =

{
t + 1

2
t2 t ≥ −1

2
,

−1
4
log(−2t)− 3

8
t < −1

2
,

(cf. quadratic logarithmic method of Ben-Tal and Zibulevski [2]).
To establish an abstract convexity result for an augmenting function that may be

unbounded from below, we use an additional assumption on the function f .

13



Assumption 5 For any x̄ ∈ Rn with x̄ ≤ 0 and x̄ 6= 0, the vector (x̄, 0) is not an
asymptotic direction of epi(f), i.e.,

(x̄, 0) /∈ (epi(f))∞ for any x̄ ≤ 0 with x̄ 6= 0.

For example, a decreasing function f satisfies the preceding assumption. Informally
speaking, any nonincreasing function f that is not “flat” along any rays of the form
{x+λx̄ | λ ≥ 0}, for x, x̄ ∈ Rn with x̄ ≤ 0 and x̄ 6= 0, satisfies the preceding assumption.

We next state our abstract convexity result for unbounded augmenting functions.
The proof uses a similar line of analysis to that of Proposition 2.

Proposition 3 Let f : Rn 7→ (−∞,∞] be a function that satisfies Assumption 1 and
Assumption 5. Let σ be an augmenting function that satisfies Assumption 4. Then, for
every ε > 0, there exist scalars c and r̄ > 0 such that

f(x) +
1

r
σ(rx) ≥ c > f(0)− ε for all x ∈ Rn and all r ≥ r̄. (16)

As a special consequence of the preceding relation, we have that the function f is abstract
convex at x = 0 with respect to H̄σ, where

H̄σ =

{
h | h(x) = −1

r
σ(rx) + c, x ∈ Rn, r > 0, c ∈ R

}
.

Proof. Assume to arrive at a contradiction that relation (16) does not hold. Then, there
exist a positive scalar sequence {rk} with rk → ∞ and a vector sequence {xk} ⊂ Rn

such that

f(xk) +
1

rk

σ(rkxk) ≤ f(0)− ε for all k. (17)

Now, we consider separately the following two cases: the sequence {xk} is bounded,
and {xk} is unbounded.

Case 1: The sequence {xk} is bounded.

We may assume without loss of generality that xk → x̄. In view of Assumption 1(c) and
Lemma 1, it follows that the sequence {f(xk)} is bounded from below, i.e., f(xk) ≥ K
for some scalar K and for all k. Hence, it follows from Eq. (17) that

σ(rkxk)

rk

≤ f(0)− ε− f(xk) ≤ f(0)− ε−K,

and therefore

lim sup
k→∞

σ(rkxk)

rk

< ∞.

Since rk → ∞ and xk → x̄, by Assumption 4(a), we have x̄ ≤ 0. Consequently, by
Assumption 4(b), we further have

lim inf
k→∞

σ(rkxk)

rk

≥ 0.
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Taking the limit inferior in Eq. (17) as k → ∞, and using the preceding relation, we
obtain

lim inf
k→∞

f(xk) ≤ f(0)− ε. (18)

Since xk → x̄ and x̄ ≤ 0, it follows that x+
k → 0. Furthermore, since xk ≤ x+

k and the
function f is nonincreasing, we have f(x+

k ) ≤ f(xk) for all k. Combining these with the
assumption that f is lower semicontinuous at 0 [cf. Assumption 1(b)], we obtain

f(0) ≤ lim inf
k→∞

f(x+
k ) ≤ lim inf

k→∞
f(xk).

Since lim infk→∞ f(xk) ≤ f(0)− ε [cf. Eq. (18)], this yields a contradiction.

Case 2: The sequence {xk} is unbounded.

We may assume without loss of generality that ‖xk‖ → ∞ and ‖xk‖ > 0 for all k.
Dividing by ‖xk‖ in Eq. (17), we obtain

f(xk)

‖xk‖ +
σ(λkvk)

λk

≤ f(0)− ε

‖xk‖ for all k, (19)

where
λk = rk‖xk‖ and vk =

xk

‖xk‖ .

Note that vk is bounded, and we may assume without loss of generality that vk → v̄ for
some vector v̄ 6= 0.

By rearranging the terms and taking the limit superior in relation (19), we obtain

lim sup
k→∞

σ(λkvk)

λk

≤ − lim inf
k→∞

f(xk)

‖xk‖ . (20)

If the sequence {f(xk)} is bounded from below, then we have

lim inf
k→∞

f(xk)

‖xk‖ > −∞.

If the sequence {f(xk)} is unbounded from below, the preceding relation still holds in
view of Assumption 1(c) and Lemma 1. Hence, it follows from Eq. (20) that

lim sup
k→∞

σ(λkvk)

λk

< ∞.

Since λk → ∞ and vk → v̄, by Assumption 4(a), we have v̄ ≤ 0. By Assumption 4(b),
we further have

lim inf
k→∞

σ(λkvk)

λk

≥ 0.

By taking limit inferior in relation (19) and by using the preceding inequality, we obtain

lim inf
k→∞

f(xk)

‖xk‖ ≤ 0.
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Without loss of generality, we may assume that f(xk)+

‖xk‖ → 0 along some subsequence.

Therefore, we have

1

‖xk‖(xk, f(xk)
+) → (v̄, 0) for some v̄ ≤ 0 with v̄ 6= 0.

Since 1
‖xk‖ → 0 and (xk, f(xk)

+) ∈ epi(f) for all k, by the definition of an asymptotic

direction [cf. Definition 3] it follows that (v̄, 0) ∈ (epi(f))∞ for some v̄ ≤ 0 and v̄ 6= 0.
This, however, contradicts Assumption 5. Hence, relation (16) holds. The proof that
relation (16) implies the abstract convexity of f at x = 0 with respect to H̄ is similar
to that of Proposition 2. Q.E.D.

4 Application to Constrained Optimization Duality

In this section, we use the abstract convexity results of Section 3 to study duality for
constrained (nonconvex) optimization problems. We consider the following optimization
problem

min F0(x)
s.t. x ∈ X, F (x) ≤ 0,

where X is a nonempty subset of Rn,

F (x) = (F1(x), . . . , Fm(x)),

and Fi : Rn 7→ (−∞,∞] for i = 0, 1, . . . , m. We refer to this as the primal problem, and
denote its optimal value by F ∗.

For the primal problem, we consider a dualizing parametrization function F̄ : Rn ×
Rm 7→ (−∞,∞] that satisfies F̄ (x, 0) = F0(x) for all x ∈ X and F (x) ≤ 0. One
particular example of a dualizing parametrization is the following:

F̄ (x, u) =

{
F0(x) if F (x) ≤ u,
+∞ otherwise,

(21)

(considered by Nedić and Ozdaglar in [10] and [11]). The parametrization function
induces the perturbation or primal function given by

p(u) = inf
x∈X

F̄ (x, u). (22)

We next define the augmented dual problem through the use of coupling functions
(see Burachik and Rubinov [7]). In particular, for Ω = R+×Rm and a given augmenting
function σ, we consider coupling functions ρ of the following two forms:

ρ(u,w) = −rσ(u)− µ′u for all u ∈ Rm and all w = (r, µ) ∈ Ω,

and

ρ(u,w) = −1

r
σ(ru)− µ′u for all u ∈ Rm and all w = (r, µ) ∈ Ω.

Note that the preceding coupling functions satisfy ρ(0, w) = 0 for all w ∈ Ω.
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For any coupling function ρ, we define the augmented Lagrangian function as

l(x,w) = inf
u∈Rm

{
F̄ (x, u)− ρ(u,w)

}
, (23)

and the augmented dual function as

q(w) = inf
x∈X

l(x,w). (24)

We consider the problem
max q(w)
s.t. w ∈ Ω.

(25)

We refer to this problem as the augmented dual problem, and denote its optimal value
by q∗. We say that there is zero duality gap when q∗ = F ∗, and we say that there is a
duality gap when q∗ < F ∗ .

We establish our duality results through the use of Fenchel-Moreau theory involving
conjugate functions (see Burachik and Rubinov [7]). Specifically, let p : Rm 7→ [−∞,∞]
be an arbitrary function. We define the Fenchel-Moreau conjugate to p by

pρ(w) = sup
u∈Rm

{ρ(u,w)− p(u)} for all w ∈ Ω. (26)

We also define the Fenchel-Moreau biconjugate to p by

pρρ(u) = sup
w∈Ω

{ρ(u,w)− pρ(w)} for all u ∈ Rm. (27)

In the subsequent development, we use the following classical result of abstract convex
analysis (see Rubinov [16]).

Theorem 1 (Fenchel-Moreau Theorem) Let H be a set of functions given by

H = {g | g(u) = ρ(u,w) + c, u ∈ Rm, w ∈ Ω, c ∈ R}. (28)

Then, a function p : Rm 7→ [−∞,∞] is abstract convex at a point ū ∈ Rm with respect
to H if and only if

p(ū) = pρρ(ū).

We next provide an equivalent characterization of zero duality gap in terms of the
perturbation function and its biconjugate (see also [17]).

Proposition 4 There is zero duality gap if and only if

p(0) = pρρ(0),

where pρρ is the Fenchel-Moreau biconjugate of p.
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Proof. Combining the relations in (23)-(25), we obtain

q∗ = sup
w∈Ω

inf
x∈X

inf
u∈Rm

{F̄ (x, u)− ρ(u,w)}
= sup

w∈Ω
inf

u∈Rm
inf
x∈X

{F̄ (x, u)− ρ(u,w)}
= sup

w∈Ω
inf

u∈Rm
{p(u)− ρ(u,w)}

= sup
w∈Ω

[
− sup

u∈Rm

{ρ(u,w)− p(u)}
]
.

By using the definition of Fenchel-Moreau conjugate of p [cf. Eq. (26)], we have

q∗ = sup
w∈Ω

(−pρ(w))

= sup
w∈Ω

{ρ(0, w)− pρ(w)},

where the second equality follows from the assumption on the coupling function that
ρ(0, w) = 0 for all w ∈ Ω. By the definition of Fenchel-Moreau conjugate of p [cf. Eq.
(27)], we obtain

q∗ = pρρ(0).

By definition of the perturbation function, we have p(0) = f ∗, thus implying that there
is zero duality gap if and only if p(0) = pρρ(0). Q.E.D.

For a given coupling function ρ, we define the set of functions

H = {h | h(u) = ρ(u,w) + c, u ∈ Rm, w ∈ Ω, c ∈ R}
[cf. Eq. (28)]. From Proposition 4 and Theorem 1 it follows that there is zero duality
gap if and only if the perturbation function p is abstract convex at u = 0 with respect
to the set H. This, together with the abstract convexity results of Section 3, yields the
following sufficient conditions for zero duality gap.

Proposition 5 (Sufficient Conditions for Zero Duality Gap) Assume that the pertur-
bation function p satisfies Assumption 1. Furthermore, assume that one of the following
holds:

(a) The augmenting function σ satisfies Assumption 2, and the coupling function ρ is
given by

ρ(u,w) = −rσ(u)− µ′u.

(b) The augmenting function σ satisfies Assumption 3, and the coupling function ρ is
given by

ρ(u,w) = −1

r
σ(ru)− µ′u.

(c) The perturbation function p satisfies Assumption 5. The augmenting function σ
satisfies Assumption 4, and the coupling function ρ is given by

ρ(u,w) = −1

r
σ(ru)− µ′u.
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Then, there is zero duality gap, i.e., q∗ = f ∗.

Proof. It suffices to show that p does not take the value −∞. Once this is established,
the result in part (a) [(b) and (c), respectively] follows from Proposition 4, Theorem 1,
and Proposition 1 [Proposition 2 and Proposition 3, respectively].

Assume to obtain a contradiction that p(ū) = −∞ for some ū ∈ Rm. Consider the
following sequence

uk = ū + ke with e = (1, . . . , 1) and e ∈ Rm.

Note that we have uk ≥ ū for all k. Since the perturbation function p is nonincreasing
[cf. Eqs. (21)-(22)] and p(ū) = −∞, it follows that

p(uk) ≤ p(ū) = −∞ for all k.

Thus, the vectors (uk,−k‖uk‖) for k ≥ 1 belong to the epigraph epi(p). Define

λk =
1

k‖uk‖ for k ≥ 1,

and note that λk > 0 and λk → 0 as k →∞. Furthermore, we have

λk (uk,−k‖uk‖) =

(
uk

k‖uk‖ ,−1

)
.

Thus, it follows that λk (uk,−k‖uk‖) converges to (0,−1). By the definition of the
asymptotic cone [cf. Definition 3], it further follows that (0,−1) is an asymptotic direc-
tion of epi(p), i.e., (0, 1) ∈ (epi(p))∞. This, however, contradicts the assumption that
(0, 1) 6∈ (epi(p))∞ [cf. Assumption 1(c)]. Q.E.D.

We now provide an example of a perturbation function satisfying Assumption 1. At
first, note that p is always nonincreasing [cf. Eqs. (21)-(22)]. Consider an optimization
problem where the constraint set X is compact and the functions Fi, i = 0, 1, . . . ,m
are lower semicontinuous over Rn. In this case, clearly p(0) is finite, and thus p satisfies
Assumption 1(a). Furthermore, using compactness of X and lower semicontinuity of Fi’s,
one can show that p(u) is lower semicontinuous at u = 0, thus verifying that p satisfies
Assumption 1(b). Moreover, by the compactness of X and the lower semicontinuity of
F0 it follows that p(u) ≥ infx∈X F0(x) for all u. In view of this and Lemma 1, it further
follows that (0, 1) 6∈ (epi(p))∞, thus showing that p satisfies Assumption 1(c).

5 Conclusions

In this paper, we provided some zero duality gap results for constrained nonconvex
optimization problems using the framework of abstract convexity. In particular, we
have considered three different types of augmenting functions: nonnegative augmenting
functions, bounded-below augmenting functions, and unbounded augmenting functions.
Using these augmenting functions, we have defined two different sets of elementary func-
tions and used them to analyze the abstract convexity properties of the perturbation
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function of the constrained problem. In our analysis, we have assumed some asymp-
totic direction properties of the perturbation function which are less restrictive than
compactness assumptions used in previous work.

We have considered augmented dual problems defined in terms of nonconvex aug-
menting functions. We have connected the abstract convexity results with the zero
duality gap properties of the augmented dual problems through the use of the well-
known Fenchel-Moreau Theorem. The zero duality gap results established here have
potential use in the development of dual algorithms for solving nonconvex constrained
optimization problems. In particular, for such problems, one may consider relaxing some
or all of the constraints by using the augmented Lagrangian scheme. Our results provide
sufficient conditions guaranteeing the convergence of dual values to the primal optimal
value without convexity assumptions for augmented Lagrangian functions.
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