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1. Introduction. We analyze price competition in the presence of congestion costs. Consider the
following environment: one unit of traffic can use one of I alternative routes. More traffic on a particular
route causes delays, exerting a negative (congestion) externality on existing traffic.1 Congestion costs are
captured by a route-specific non-decreasing convex latency function, li (·). Profit-maximizing oligopolists
set prices (tolls) for travel on each route denoted by pi. We analyze subgame perfect Nash equilibria of
this environment, where for each price vector, p, all traffic chooses the path that has minimum (delay
plus toll) cost, li + pi, and oligopolists choose prices to maximize profits.

The environment we analyze is of practical importance for a number of settings. These include trans-
portation and communication networks, where additional use of a route (path) generates greater con-
gestion for all users, and markets in which there are “snob” effects, so that goods consumed by fewer
other consumers are more valuable (see for example, [52]). The key feature of these environments is
the negative congestion externality that users exert on others. This externality has been well-recognized
since the work by Pigou [40] in economics, by [45], [56], [5] in transportation networks, and by [36], [24],
[23], [30] in communication networks. More recently, there has been a growing literature that focuses on
quantification of efficiency loss (referred to as the price of anarchy) that results from externalities and
strategic behavior in different classes of problems: selfish routing (e.g., [25], [44], [10], [11], [39] and [15]);
resource allocation by market mechanisms (e.g., [22], [46], [31], [58]); network design (e.g., [3]); and two-
stage competitive facility location without congestion costs and externalities (e.g., [53]). Nevertheless,
the game-theoretic interactions between (multiple) service providers and users, or the effects of compe-
tition among the providers on the efficiency loss has not been considered in networks with congestion
(externalities). This is an important area for analysis since in most networks congestion is a first-order
issue and (competing) profit-maximizing entities charge prices for use. Moreover, we will show that the

1An externality arises when the actions of the player in a game affects the payoff of other players.
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nature of the analysis changes significantly in the presence of price competition.

We provide a general framework for the analysis of price competition among service providers2 in a
congested (and potentially capacitated) network, study existence of pure strategy and mixed strategy
equilibria, and characterize and quantify the efficiency properties of equilibria. There are four sets of
major results from our analysis.

First, though the equilibrium of traffic assignment without prices can be highly inefficient (e.g., [40],
[44], [10]), price-setting by a monopolist internalizes the negative externality and achieves efficiency.

Second, increasing competition can increase inefficiency. In fact, changing the market structure from
monopoly to duopoly almost always increases inefficiency. This result contrasts with most existing results
in the economics literature where greater competition tends to improve the allocation of resources (e.g.
see Tirole [50]). The intuition for this result, which is related to congestion, is illustrated by the example
we discuss below.3

Third and most important, we provide tight bounds on the extent of inefficiency in the presence of
oligopolistic competition. We show that when latency at zero flow (traffic) is equal to zero, social surplus
(defined as the difference between users’ willingness to pay and the delay cost) in any pure strategy
oligopoly equilibrium is always greater than 5/6 of the maximum social surplus. When latency at zero
flow can be positive, there is a slightly lower bound of 2

√
2− 2 ≈ 0.828. These bounds are independent

of both the number of routes, I, which could be arbitrarily large, and how these routes are distributed
across different oligopolists (i.e., of market structure). Simple examples reach these bounds.

Finally, we also show that pure strategy equilibria may fail to exist. This is not surprising in view
of the fact that what we have here is a version of a Bertrand-Edgeworth game where pure strategy
equilibria do not exist in the presence of convex costs of production or capacity constraints (e.g., [14],
[48], [6], [55]). However, in our oligopoly environment when latency functions are linear, a pure strategy
equilibrium always exists, essentially because congestion externalities remove the payoff discontinuities
inherent in the Bertrand-Edgeworth game. Non-existence becomes an issue when latency functions are
highly convex. In this case, we prove that mixed strategy equilibria always exist. We also show that mixed
strategy equilibria can lead to arbitrarily inefficient worst-case realizations; in particular, social surplus
can become arbitrarily small relative to the maximum social surplus, though the average performance of
mixed strategy equilibria is much better.

The following example illustrates some of our results.

Example 1.1 Figure 1 shows a situation similar to the one first analyzed by Pigou [40] to highlight the
inefficiency due to congestion externalities. One unit of traffic will travel from origin A to destination B,
using either route 1 or route 2. The latency functions are given by

l1 (x) =
x2

3
, l2 (x) =

2
3
x.

It is straightforward to see that the efficient allocation [i.e., one that minimizes the total delay cost∑
i li(xi)xi] is xS

1 = 2/3 and xS
2 = 1/3, while the (Wardrop) equilibrium allocation that equates delay on

the two paths is xWE
1 ≈ .73 > xS

1 and xWE
2 ≈ .27 < xS

2 . The source of the inefficiency is that each unit
of traffic does not internalize the greater increase in delay from travel on route 1, so there is too much
use of this route relative to the efficient allocation.

Now consider a monopolist controlling both routes and setting prices for travel to maximize its profits.
We show below that in this case, the monopolist will set a price including a markup, xil

′
i (when li

is differentiable), which exactly internalizes the congestion externality. In other words, this markup is
equivalent to the Pigovian tax that a social planner would set in order to induce decentralized traffic to
choose the efficient allocation. Consequently, in this simple example, monopoly prices will be pME

1 =
(2/3)3 + k and pME

2 =
(
2/32

)
+ k, for some constant k. The resulting traffic in the Wardrop equilibrium

will be identical to the efficient allocation, i.e., xME
1 = 2/3 and xME

2 = 1/3.

2We use oligopolist and service provider interchangeably throughout the paper.
3Because, in our model, users are homogeneous and have a constant reservation utility, in the absence of congestion

externalities, all market structures would achieve efficiency, and a change from monopoly to duopoly, for example, would

have no efficiency consequence.
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1 unit of
traffic

l1(x) = x2/3

l2(x) = (2/3)x

Figure 1: A two link network with congestion-dependant latency functions.

Finally, consider a duopoly situation, where each route is controlled by a different profit-maximizing
provider. In this case, it can be shown that equilibrium prices will take the form pOE

i = xi (l′1 + l′2)
[see Eq. (20) in Section 4], or more specifically, pOE

1 ≈ 0.61 and pOE
2 ≈ 0.44. The resulting equilibrium

traffic is xOE
1 ≈ .58 < xS

1 and xOE
2 ≈ .42 > xS

2 , which also differs from the efficient allocation. We will
show that this is generally the case in the oligopoly equilibrium. Interestingly, while in the Wardrop
equilibrium without prices, there was too much traffic on route 1, now there is too little traffic because of
its greater markup. It is also noteworthy that although the duopoly equilibrium is inefficient relative to
the monopoly equilibrium, in the monopoly equilibrium k is chosen such that all of the consumer surplus
is captured by the monopolist, while in the oligopoly equilibrium users may have positive consumer
surplus.4

The intuition for the inefficiency of duopoly relative to monopoly is related to a new source of (differ-
ential) monopoly power for each duopolist, which they exploit by distorting the pattern of traffic: when
provider 1, controlling route 1, charges a higher price, it realizes that this will push some traffic from
route 1 to route 2, raising congestion on route 2. But this makes the traffic using route 1 become more
“locked-in,” because their outside option, travel on the route 2, has become worse.5 As a result, the
optimal price that each duopolist charges will include an additional markup over the Pigovian markup.
These are x1l

′
2 for route 1 and x2l

′
1 for route 2. Since these two markups are generally different, they will

distort the pattern of traffic away from the efficient allocation. Naturally, however, prices are typically
lower with duopoly, so even though social surplus declines, users will be better off than in monopoly (i.e.,
they will command a positive consumer surplus).

There is a large literature on models of congestion both in transportation and communication networks
(e.g. [5], [38], [43], [34], [33], [44]).6 However, very few studies have investigated the implications of
having the “property rights” over routes assigned to profit-maximizing providers. In [4], Basar and
Srikant analyze monopoly pricing under specific assumptions on the utility and latency functions. He
and Walrand [19] study competition and cooperation among internet service providers under specific
demand models. Issues of efficient allocation of flows or traffic across routes do not arise in these papers.
Our previous work [1] studies the monopoly problem and contains the efficiency of the monopoly result,
but none of the other results here. More recent independent work by [18] builds on [1] and also studies
competition among service providers. Using a different mathematical approach, they provide non-tight
bounds on the efficiency loss for the case of elastic traffic. Finally, in current work, [2], we extend some
of the results of this paper to a network with parallel-serial structure.

In the rest of the paper, we use the terminology of a (communication) network, though all of the
analysis applies to resource allocation in transportation networks, electricity markets, and other economic
applications. Section 2 describes the basic environment. Section 3 briefly characterizes the monopoly

4Consumer surplus is the difference between users’ willingness to pay (reservation price) and effective costs, pi + li(xi),

and is thus different from social surplus (which is the difference between users’ willingness to pay and latency cost, li(xi),

thus also takes into account producer surplus/profits). See [32].
5Using economics terminology, we could also say that the demand for route 1 becomes more “inelastic”. Since this term

has a different meaning in the communication networks literature (see [47]), we do not use it here.
6Some of these papers also use prices (or tolls) to induce flow patterns that optimize overall system objective, and a

number of studies have characterized the “toll set”, i.e., the set of all tolls that induce optimal flows, with the goal of

choosing tolls from this set according to secondary criteria, e.g., minimizing the total amount of tolls or the number of

tolled routes; see [8], [20], [27], [28], and [21].
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Figure 2: Aggregate utility function.

equilibrium and establishes its efficiency. Section 4 defines and characterizes the oligopoly equilibria
with competing profit-maximizing providers. Section 5 contains the main results and characterizes the
efficiency properties of the oligopoly equilibrium and provide bounds on efficiency. Section 6 provides a
tight efficiency bound when there may be positive latency at zero flow. Section 7 contains concluding
comments.

Regarding notation, all vectors are viewed as column vectors, and inequalities are to be interpreted
componentwise. We denote by RI

+ the set of nonnegative I-dimensional vectors. Let Ci be a closed
subset of [0,∞) and let f : Ci 7→ R be a convex function. We use ∂f(x) to denote the set of subgradients
of f at x, and f−(x) and f+(x) to denote the left and right derivatives of f at x. For a function
f : Rn 7→ (−∞,∞], we say that f is closed if the level set {x | f(x) ≤ c} is closed for every scalar c. Note
that a function is closed if and only if it is lower semicontinuous over Rn (see [9], Proposition 1.2.2).

2. Model. We consider a network with I parallel links. Let I = {1, . . . , I} denote the set of links.
Let xi denote the total flow on link i, and x = [x1, . . . , xI ] denote the vector of link flows. Each link in
the network has a flow-dependent latency function li(xi), which measures the travel time (or delay) as a
function of the total flow on link i. We denote the price per unit flow (bandwidth) of link i by pi. Let
p = [p1, . . . , pI ] denote the vector of prices.

We are interested in the problem of routing d units of flow across the I links. We assume that this is the
aggregate flow of many “small” users and thus adopt the Wardrop’s principle (see [56]) in characterizing
the flow distribution in the network; i.e., the flows are routed along paths with minimum effective cost,
defined as the sum of the latency at the given flow and the price of that path (see the definition below).7

We also assume that the users have a reservation utility R and decide not to send their flow if the effective
cost exceeds the reservation utility. This implies that user preferences can be represented by the piecewise
linear aggregate utility function u (·) depicted in Figure 2.8

To account for additional side constraints in the traffic equilibrium problem, including capacity con-
straints on the links, we use the following definition of a WE (see [26], [29]). Lemma 2.1 shows that
this definition is equivalent to the more standard definition of a WE used in the literature under some
assumptions.

Definition 2.1 For a given price vector p ≥ 0,9 a vector xWE ∈ RI
+ is a Wardrop equilibrium (WE) if

xWE ∈ arg max
x≥0P

i∈I xi≤d

{∑

i∈I

(
R− li(xWE

i )− pi

)
xi

}
. (1)

7Wardrop’s principle is used extensively in modelling traffic behavior in transportation networks, e.g., [5], [12], [38], [49],

and in communication networks, e.g., [44], [10].
8This simplifying assumption implies that all users are “homogeneous” in the sense that they have the same reservation

utility, R. The analysis below will show that the value of this reservation utility R has no effect on any of the results as

long as it is strictly positive. We discuss potential issues in extending this work to users with elastic and heterogeneous

requirements in the concluding section.
9Since the reservation utility of users is equal to R, we can also restrict attention to pi ≤ R for all i. Throughout the

paper, we use p ≥ 0 and p ∈ [0, R]I interchangeably.
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We denote the set of WE at a given p by W (p).

Assumption 2.1 For each i ∈ I, the latency function li : [0,∞) 7→ [0,∞] is closed, convex, nondecreas-
ing, and satisfies li(0) = 0.

The assumption of zero latency at zero flow, i.e., li(0) = 0, implies that all latency is due to flow of
traffic, and there are no fixed latency costs.10 It is adopted to simplify the discussion, especially the
characterization of equilibrium prices in Proposition 4.4 below. A trivial relaxation of this assumption
to li(0) = L for all i ∈ I for some L > 0 will have no effect on any of the results in the paper. Allowing
for differential levels of li(0) complicates the analysis, but has little effect on the major results. This case
is discussed in Section 6, where we provide a slightly lower tight bound for the inefficiency of oligopoly
equilibria without this assumption.

Another feature of Assumption 2.1 is that it allows latency functions to be extended real-valued, thus
allowing for capacity constraints. Let Ci = {x ∈ [0,∞) | li(x) < ∞} denote the effective domain of li.
By Assumption 2.1, Ci is a closed interval of the form [0, b] or [0,∞). Let bCi

= supx∈Ci
x. Without loss

of generality, we can add the constraint xi ∈ Ci in Eq. (1). Using the optimality conditions for problem
(1), we see that a vector xWE ∈ RI

+ is a WE if and only if
∑

i∈I xWE
i ≤ d and there exists some λ ≥ 0

such that λ
( ∑

i∈I xWE
i − d

)
= 0 and for all i,

R− li(xWE
i )− pi ≤ λ if xWE

i = 0, (2)
= λ if 0 < xWE

i < bCi ,

≥ λ if xWE
i = bCi

.

When the latency functions are real-valued [i.e., Ci = [0,∞)], we obtain the following characterization
of a WE, which is often used as the definition of a WE in the literature. This lemma states that in the
WE, the effective costs, defined as li(xWE

i ) + pi, are equalized on all links with positive flows.

Lemma 2.1 Let Assumption 2.1 hold, and assume further that Ci = [0,∞) for all i ∈ I. Then a
nonnegative vector x∗ ∈ W (p) if and only if

li(x∗i ) + pi = min
j
{lj(x∗j ) + pj}, ∀ i with x∗i > 0, (3)

li(x∗i ) + pi ≤ R, ∀ i with x∗i > 0,∑

i∈I
x∗i ≤ d,

with
∑

i∈I x∗i = d if minj

{
lj(xj) + pj

}
< R.

Example 2 below shows that condition (3) in this lemma may not hold when the latency functions are
not real-valued. The existence, uniqueness, and continuity properties of a WE are well-studied (see [5],
[12], [49]). We provide here the standard proof for existence, based on establishing the equivalence of WE
and the optimal solutions of a convex optimization problem, which we will refer to later in our analysis.

Proposition 2.1 (Existence and Continuity) Let Assumption 2.1 hold. For any price vector p ≥ 0,
the set of WE, W (p), is nonempty. Moreover, the correspondence W : RI

+ ⇒ RI
+ is upper semicontinuous.

Proof. Given any p ≥ 0, consider the following optimization problem

maximizex≥0

∑

i∈I

(
(R− pi)xi −

∫ xi

0

li(z)dz
)

(4)

subject to
∑

i∈I
xi ≤ d.

xi ∈ Ci, ∀ i.

In view of Assumption (2.1) (i.e., li is nondecreasing for all i), it can be shown that the objective
function of problem (4) is convex over the constraint set, which is nonempty (since 0 ∈ Ci) and convex.

10This assumption is a good approximation to communication networks where queueing delays are more substantial than

propagation delays.
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Moreover, the first order optimality conditions of problem (4), which are also sufficient conditions for
optimality, are identical to the WE optimality conditions [cf. Eq. (2)]. Hence a flow vector xWE ∈ W (p)
if and only if it is an optimal solution of problem (4). Since the objective function of problem (4) is
continuous and the constraint set is compact, this problem has an optimal solution, showing that W (p)
is nonempty. The fact that W is an upper semicontinuous correspondence at every p follows by using the
Theorem of the Maximum (see Berge [7], chapter 6) for problem (4). ¤

WE flows also satisfy intuitive monotonicity properties given in the following proposition. The proof
follows from the optimality conditions [cf. Eq. (2)] and is omitted (see [1]).

Proposition 2.2 (Monotonicity) Let Assumption 2.1 hold. For a given p ≥ 0, let p−j = [pi]i 6=j .

(a) For some p̄ ≤ p, let x̄ ∈ W (p̄) and x ∈ W (p). Then,
∑

i∈I x̄i ≥
∑

i∈I xi.

(b) For some p̄j < pj , let x̄ ∈ W (p̄j , p−j) and x ∈ W (pj , p−j). Then x̄j ≥ xj and x̄i ≤ xi, for all
i 6= j.

(c) For some Ĩ ⊂ I, suppose that p̄j < pj for all j ∈ Ĩ and p̄j = pj for all j /∈ Ĩ, and let x̄ ∈ W (p̄)
and x ∈ W (p). Then

∑
j∈eI x̄j ≥

∑
j∈eI xj .

For a given price vector p, the WE need not be unique in general. The following example illustrates
some properties of the WE.

Example 2.1 Consider a two link network. Let the total flow be d = 1 and the reservation utility be
R = 1. Assume that the latency functions are given by

l1(x) = l2(x) =
{

0 if 0 ≤ x ≤ 2
3

∞ otherwise.

At the price vector (p1, p2) = (1, 1), the set of WE, W (p), is given by the set of all vectors (x1, x2) with
0 ≤ xi ≤ 2/3 and

∑
i xi ≤ 1. At any price vector (p1, p2) with p1 > p2 = 1, W (p) is given by all (0, x2)

with 0 ≤ x2 ≤ 2/3.

This example also illustrates that Lemma 1 need not hold when latency functions are not real-valued.
Consider, for instance, the price vector (p1, p2) = (1 − ε, 1 − aε) for some scalar a > 1. In this case, the
unique WE is (x1, x2) = (1/3, 2/3), and clearly effective costs on the two routes are not equalized despite
the fact that they both have positive flows. This arises because the path with the lower effective cost is
capacity constrained, so no more traffic can use that path.

Under further restrictions on the li, the following standard result follows (proof omitted).

Proposition 2.3 (Uniqueness) Let Assumption 2.1 hold. Assume further that li is strictly increasing
over Ci. For any price vector p ≥ 0, the set of WE, W (p), is a singleton. Moreover, the function
W : RI

+ 7→ RI
+ is continuous.

Since we do not assume that the latency functions are strictly increasing, we need the following lemma
in our analysis to deal with nonunique WE flows.

Lemma 2.2 Let Assumption 2.1 hold. For a given p ≥ 0, define the set

Ī = {i ∈ I | ∃ x, x̂ ∈ W (p) with xi 6= x̂i}. (5)

Then

li(xi) = 0, ∀ i ∈ Ī, ∀ x ∈ W (p),
pi = pj , ∀ i, j ∈ Ī.

Proof. Consider some i ∈ Ī and x ∈ W (p). Since i ∈ Ī, there exists some x̂ ∈ W (p) such that
xi 6= x̂i. Assume without loss of generality that xi > x̂i. There are two cases to consider:
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(a) If xk ≥ x̂k for all k 6= i, then
∑

j∈I xj >
∑

j∈I x̂j , which implies that the WE optimality
conditions [cf. Eq. (2)] for x̂ hold with λ̂ = 0. By Eq. (2) and xi > x̂i, we have

li(xi) + pi ≤ R,

li(x̂i) + pi ≥ R,

which together imply that li(xi) = li(x̂i). By Assumption 2.1 (i.e., li is convex and li(0) = 0), it
follows that li(xi) = 0.

(b) If xk < x̂k for some k, by the WE optimality conditions, we obtain

li(xi) + pi ≤ lk(xk) + pk,

li(x̂i) + pi ≥ lk(x̂k) + pk.

Combining the above with xi > x̂i and xk < x̂k, we see that li(xi) = li(x̂i), and lk(xk) = lk(x̂k).
By Assumption 2.1, this shows that li(xi) = 0 (and also that pi = pk).

Next consider some i, j ∈ Ī. We will show that pi = pj . Since i ∈ Ī, there exist x, x̂ ∈ W (p) such
that xi > x̂i. There are three cases to consider:

• xj < x̂j . Then a similar argument to part (b) above shows that pi = pj .
• xj > x̂j . If xk ≥ x̂k for all k 6= i, j, then

∑
m x̂m < d, implying that the WE optimality conditions

hold with λ̂ = 0. Therefore, we have

li(xi) + pi ≤ R,

lj(x̂j) + pj ≥ R,

which together with li(xi) = lj(x̂j) = 0 imply that pi = pj .
• xj = x̂j . Since j ∈ Ī, by definition there must exist some other x̄ ∈ W (p) such that xj 6= x̄j .

Repeating the above two steps with x̄j instead of x̂j yields the desired result.

¤
Intuitively, this lemma states that if there exist multiple WEs, x, x̂ ∈ W (p) such that xi 6= x̂i, then

the latency function li must be locally flat around xi (and x̂i). Given the assumption that li(0) = 0 and
the convexity of latency functions, this immediately implies li(xi) = 0.

We next define the social problem and the social optimum, which is the routing (flow allocation) that
would be chosen by a planner that has full information and full control over the network.

Definition 2.2 A flow vector xS is a social optimum if it is an optimal solution of the social problem

maximizex≥0

∑

i∈I

(
R− li(xi)

)
xi (6)

subject to
∑

i∈I
xi ≤ d.

In view of Assumption 2.1, the social problem has a continuous objective function and a compact
constraint set, guaranteeing the existence of a social optimum, xS . Moreover, using the optimality
conditions for a convex program (see [9], Section 4.7), we see that a vector xS ∈ RI

+ is a social optimum
if and only if

∑
i∈I xS

i ≤ d and there exists a subgradient gli ∈ ∂li(xS
i ) for each i, and a λS ≥ 0 such that

λS
(∑

i∈I xS
i − d

)
= 0 and for each i,

R− li(xS
i )− xS

i gli ≤ λS if xS
i = 0, (7)

= λS if 0 < xS
i < bCi ,

≥ λS if xS
i = bCi .

For future reference, for a given vector x ∈ RI
+, we define the value of the objective function in the

social problem,
S(x) =

∑

i∈I
(R− li(xi)) xi, (8)

as the social surplus, i.e., the difference between users’ willingness to pay and the total latency.
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3. Monopoly Equilibrium and Efficiency. In this section, we assume that a monopolist service
provider owns the I links and charges a price of pi per unit bandwidth on link i. We considered a related
problem in [1] for atomic users with inelastic traffic (i.e., the utility function of each of a finite set of
users is a step function), and with increasing, real-valued and differentiable latency functions. Here we
show that similar results hold for the more general latency functions and the demand model considered
in Section 2.

The monopolist sets the prices to maximize his profit given by

Π(p, x) =
∑

i∈I
pixi,

where x ∈ W (p). This defines a two-stage dynamic pricing-congestion game, where the monopolist sets
prices anticipating the demand of users, and given the prices (i.e., in each subgame), users choose their
flow vectors according to the WE.

Definition 3.1 A vector (pME , xME) ≥ 0 is a Monopoly Equilibrium (ME) if xME ∈ W (pME) and

Π(pME , xME) ≥ Π(p, x), ∀ p ≥ 0, ∀ x ∈ W (p) .

Our definition of the ME is stronger than the standard subgame perfect Nash equilibrium concept for
dynamic games. With a slight abuse of terminology, let us associate a subgame perfect Nash equilibrium
with the on-the-equilibrium-path actions of the two-stage game.

Definition 3.2 A vector (p∗, x∗) ≥ 0 is a subgame perfect equilibrium (SPE) of the pricing-congestion
game if x∗ ∈ W (p∗) and for all p ≥ 0, there exists x ∈ W (p) such that

Π(p∗, x∗) ≥ Π(p, x).

The following proposition shows that under Assumption 2.1, the two solution concepts coincide. Since
the proof is not relevant for the rest of the argument, we provide it in Appendix A.

Proposition 3.1 Let Assumption 2.1 hold. A vector (pME , xME) is an ME if and only if it is an SPE
of the pricing-congestion game.

Since an ME (p∗, x∗) is an optimal solution of the optimization problem

maximizep≥0, x≥0

∑

i∈I
pixi (9)

subject to x ∈ W (p),

it is easier to work with than an SPE. Therefore, we use ME as the solution concept in this paper.

The preceding problem has an optimal solution, which establishes the existence of an ME. Moreover,
we have:

Proposition 3.2 Let Assumption 2.1 hold. A vector x is the flow vector at an ME if and only if it is
a social optimum. Moreover, if (p, x) is an ME, then for all i with xi > 0, we have pi = R− li(xi).

This proposition therefore establishes that the flow allocation at an ME and the social optimum are
the same. Its proof is similar to an analogous result in [1] and is omitted.

In addition to the social surplus defined above, it is also useful to define the consumer surplus, as the
difference between users’ willingness to pay and effective cost, i.e.,

∑I
i=1

(
R − li(xi) − pi

)
xi (see [32]).

By Proposition 3.2, it is clear that even though the ME achieves the social optimum, all of the surplus is
captured by the monopolist, and users are just indifferent between sending their information or not (i.e.,
receive no consumer surplus).

Our major motivation for the study of oligopolistic settings is that they provide a better approximation
to reality, where there is typically competition among service providers. A secondary motivation is to see
whether an oligopoly equilibrium will achieve an efficient allocation like the ME, while also transferring
some or all of the surplus to the consumers.
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4. Oligopoly Equilibrium. We suppose that there are S service providers, denote the set of service
providers by S, and assume that each service provider s ∈ S owns a different subset Is of the links. Service
provider s charges a price pi per unit bandwidth on link i ∈ Is. Given the vector of prices of links owned
by other service providers, p−s = [pi]i/∈Is

, the profit of service provider s is

Πs(ps, p−s, x) =
∑

i∈Is

pixi,

for x ∈ W (ps, p−s), where ps = [pi]i∈Is
.

The objective of each service provider, like the monopolist in the previous section, is to maximize
profits. Because their profits depend on the prices set by other service providers, each service provider
forms conjectures about the actions of other service providers, as well as the behavior of users, which, we
assume, they do according to the notion of (subgame perfect) Nash equilibrium. We refer to the game
among service providers as the price competition game.

Definition 4.1 A vector (pOE , xOE) ≥ 0 is a (pure strategy) Oligopoly Equilibrium (OE) if xOE ∈
W

(
pOE

s , pOE
−s

)
and for all s ∈ S,

Πs(pOE
s , pOE

−s , xOE) ≥ Πs(ps, p
OE
−s , x), ∀ ps ≥ 0, ∀ x ∈ W (ps, p

OE
−s ). (10)

We refer to pOE as the OE price.

As for the monopoly case, there is a close relation between a pure strategy OE and a pure strat-
egy subgame perfect equilibrium. Again associating the subgame perfect equilibrium with the on-the-
equilibrium-path actions, we have:

Definition 4.2 A vector (p∗, x∗) ≥ 0 is a subgame perfect equilibrium (SPE) of the price competition
game if x∗ ∈ W (p∗) and there exists a function x : RI

+ 7→ RI
+ such that x(p) ∈ W (p) for all p ≥ 0 and

for all s ∈ S,
Πs(p∗s, p

∗
−s, x

∗) ≥ Πs(ps, p
∗
−s, x(ps, p

∗
−s)) ∀ ps ≥ 0. (11)

The following proposition generalizes Proposition 3.1 and enables us to work with the OE definition,
which is more convenient for the subsequent analysis. The proof parallels that of Proposition 3.1 and is
omitted.

Proposition 4.1 Let Assumption 2.1 hold. A vector (pOE , xOE) is an OE if and only if it is an SPE
of the price competition game.

The price competition game is neither concave nor supermodular. Therefore, classical arguments that
are used to show the existence of a pure strategy equilibrium do not hold (see [16], [51]). In the next
proposition, we show that for linear latency functions, there exists a pure strategy OE. The proof is
provided in the appendix.

Proposition 4.2 Let Assumption 2.1 hold, and assume further that the latency functions are linear.
Then the price competition game has a pure strategy OE.

The existence result cannot be generalized to piecewise linear latency functions or to latency functions
which are linear over their effective domain, as illustrated in the following example.

Example 4.1 Consider a two link network. Let the total flow be d = 1. Assume that the latency
functions are given by

l1(x) = 0, l2(x) =
{

0 if 0 ≤ x ≤ δ
x−δ

ε x ≥ δ,

for some ε > 0 and δ > 1/2, with the convention that when ε = 0, l2(x) = ∞ for x > δ. We first show
that there exists no pure strategy oligopoly equilibrium for small ε (i.e., there exists no pure strategy
subgame perfect equilibrium). The following list considers all candidate oligopoly price equilibria (p1, p2)
and profitable unilateral deviations for ε sufficiently small, thus establishing the nonexistence of an OE:
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(i) p1 = p2 = 0: A small increase in the price of provider 1 will generate positive profits, thus
provider 1 has an incentive to deviate.

(ii) p1 = p2 > 0: Let x be the flow allocation at the OE. If x1 = 1, then provider 2 has an incentive
to decrease its price. If x1 < 1, then provider 1 has an incentive to decrease its price.

(iii) 0 ≤ p1 < p2: Player 1 has an incentive to increase its price since its flow allocation remains the
same.

(iv) 0 ≤ p2 < p1: For ε sufficiently small, the profit function of player 2, given p1, is strictly increasing
as a function of p2, showing that provider 2 has an incentive to increase its price.

We next show that a mixed strategy OE always exists. We define a mixed strategy OE as a mixed
strategy subgame perfect equilibrium of the price competition game (see Dasgupta and Maskin, [13]).
Let Bn be the space of all (Borel) probability measures on [0, R]n. Let Is denote the cardinality of Is, i.e.,
the number of links controlled by service provider s. Let µs ∈ BIs be a probability measure, and denote
the vector of these probability measures by µ and the vector of these probability measures excluding s
by µ−s.

Definition 4.3 (µ∗, x∗(p)) is a mixed strategy Oligopoly Equilibrium (OE) if the function x∗(p) ∈ W (p)
for every p ∈ [0, R]I and

∫

[0,R]I
Πs(ps, p−s, x

∗ (ps, p−s)) d
(
µ∗s (ps)× µ∗−s (p−s)

)

≥
∫

[0,R]I
Πs(ps, p−s, x

∗ (ps, p−s))d
(
µs (ps)× µ∗−s (p−s)

)

for all s and µs ∈ BIs .

Therefore, a mixed strategy OE simply requires that there be no profitable deviation to a different
probability measure for each oligopolist.

Example 3 (continued) We now show that the following strategy profile is the unique mixed strategy
OE for the above game when ε → 0 (a mixed strategy OE also exists when ε > 0, but its structure is
more complicated and less informative):

µ1(p) =





0 0 ≤ p ≤ R(1− δ),
1− (1−δ)R

p R(1− δ) ≤ p < R,

1 otherwise,

µ2(p) =





0 0 ≤ p ≤ R(1− δ),
1
δ − (1−δ)R

δp R(1− δ) ≤ p ≤ R,

1 otherwise.

Notice that µ1 has an atom equal to 1 − δ at R. To verify that this profile is a mixed strategy OE,
let µ′ be the density of µ, with the convention that µ′ = ∞ when there is an atom at that point. Let
Mi = {p | µ′i (p) > 0} . To establish that (µ1, µ2) is a mixed strategy equilibrium, it suffices to show that
the expected payoff to player i is constant for all pi ∈ Mi when the other player chooses p−i according
to µ−i (see [37]). These expected payoffs are

Π̄i (pi | µ−i) ≡
∫ R

0

Πi(pi, p−i, x (pi, p−i))dµ−i (p−i) . (12)

The WE demand x (p1, p2) takes the simple form of x1 (p1, p2) = 1 if p1 < p2 and x1 (p1, p2) = 1 − δ if
p1 > p2. The exact value of x1 (p1, p2) when p1 = p2 is immaterial since this event happens with zero
probability. It is evident that the expression in (12) is constant for all pi ∈ Mi for i = 1, 2 given µ1 and
µ2 above. This establishes that (µ1, µ2) is a mixed strategy OE. It can also be verified that there are no
other mixed strategy equilibria.

The next proposition, which is proved in Appendix B, establishes that a mixed strategy equilibrium
always exists.
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Proposition 4.3 Let Assumption 2.1 hold. Then the price competition game has a mixed strategy OE,
(µOE , xOE(p)).

We next provide an explicit characterization of pure strategy OE. Though of also independent interest,
these results are most useful for us to quantify the efficiency loss of oligopoly in the next section.

The following lemma shows that an equivalent to Lemma 1 (which required real-valued latency func-
tions) also holds with more general latency functions at the pure strategy OE.

Lemma 4.1 Let Assumption 2.1 hold. If (pOE , xOE) is a pure strategy OE, then

li(xOE
i ) + pOE

i = min
j
{lj(xOE

j ) + pOE
j }, ∀ i with xOE

i > 0, (13)

li(xOE
i ) + pOE

i ≤ R, ∀ i with xOE
i > 0, (14)∑

i∈I
xOE

i ≤ d, (15)

with
∑

i∈I xOE
i = d if minj{lj(xOE

j ) + pj} < R.

Proof. Let (pOE , xOE) be an OE. Since xOE ∈ W (pOE), conditions (14) and (15) follow by the
definition of a WE. Consider condition (13). Assume that there exist some i, j ∈ I with xOE

i > 0,
xOE

j > 0 such that

li(xOE
i ) + pOE

i < lj(xOE
j ) + pOE

j .

Using the optimality conditions for a WE [cf. Eq. (2)], this implies that xOE
i = bCi

. Consider changing
pOE

i to pOE
i + ε for some ε > 0. By checking the optimality conditions, we see that we can choose

ε sufficiently small such that xOE ∈ W (pOE
i + ε, pOE

−i ). Hence the service provider that owns link i
can deviate to pOE

i + ε and increase its profits, contradicting the fact that (pOE , xOE) is an OE. Finally,
assume to arrive at a contradiction that minj{lj(xOE

j )+pj} < R and
∑

i∈I xOE
i < d. Using the optimality

conditions for a WE [Eq. (2) with λ = 0 since
∑

i∈I xOE
i < d], this implies that we must have xOE

i = bCi

for some i. With a similar argument to above, a deviation to pOE
i + ε keeps xOE as a WE, and is more

profitable, completing the proof. ¤
We need the following additional assumption for our price characterization.

Assumption 4.1 Given a pure strategy OE (pOE , xOE), if for some i ∈ I with xOE
i > 0, we have

li(xOE
i ) = 0, then Is = {i}.

Note that this assumption is automatically satisfied if all latency functions are strictly increasing or if
all service providers own only one link.

Lemma 4.2 Let (pOE , xOE) be a pure strategy OE. Let Assumptions 2.1 and 4.1 hold. Let Πs denote
the profit of service provider s at (pOE , xOE).

(a) If Πs′ > 0 for some s′ ∈ S, then Πs > 0 for all s ∈ S.

(b) If Πs > 0 for some s ∈ S, then pOE
j xOE

j > 0 for all j ∈ Is.

Proof.

(a) For some j ∈ Is′ , define K = pOE
j + lj(xOE

j ), which is positive since Πs′ > 0. Assume Πs = 0 for
some s. For k ∈ Is, consider the price p̄k = K − ε > 0 for some small ε > 0. By the assumption
that lk(0) = 0, it can be seen that at the price vector (p̄k, pOE

−k ), the corresponding WE link flow
will satisfy x̄k > 0. Hence, service provider s has an incentive to deviate to p̄k at which he will
make positive profit, contradicting the fact that (pOE , xOE) is a pure strategy OE.

(b) Since Πs > 0, we have pOE
m xOE

m > 0 for some m ∈ Is. By Assumption 4.1, we can assume without
loss of generality that lm(xOE

m ) > 0 (otherwise, we are done). Let j ∈ Is and assume to arrive at
a contradiction that pOE

j xOE
j = 0. The profit of service provider s at the pure strategy OE can

be written as
Πs = Π̄s + pOE

m xOE
m ,
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where Π̄s denotes the profits from links other than m and j. Let pOE
m = K − lm(xOE

m ) for some
K. Consider changing the prices pOE

m and pOE
j such that the new profit is

Π̃s = Π̄s +
(
K − lm(xOE

m − ε)
)
(xOE

m − ε) + ε
(
K − lj(ε)

)
.

Note that ε units of flow are moved from link m to link j such that the flows of other links remain
the same at the new WE. Hence, the change in the profit is

Π̃s −Πs =
(
lm(xOE

m )− lm(xOE
m − ε)

)
xOE

m + ε
(
lm(xOE

m − ε)− lj(ε))
)
.

Since lm(xOE
m ) > 0 and lj(0) = 0, ε can be chosen sufficiently small such that the above is strictly

positive, contradicting the fact that (pOE , xOE) is an OE.

¤
The following example shows that Assumption 4.1 cannot be dispensed with for part (b) of this lemma.

Example 4.2 Consider a three link network with two providers, where provider 1 owns links 1 and 3
and provider 2 owns link 2. Let the total flow be d = 1 and the reservation utility be R = 1. Assume
that the latency functions are given by

l1 (x1) = 0, l2 (x2) = x2, l3 (x3) = ax3,

for some a > 0. Any price vector (p1, p2, p3) = (2/3, 1/3, b) with b ≥ 2/3 and (x1, x2, x3) = (2/3, 1/3, 0)
is a pure strategy OE, so p3x3 = 0 contrary to part (b) of the lemma. To see why this is an equilibrium,
note that provider 2 is clearly playing a best response. Moreover, in this allocation Π1 = 4/9. We can
represent any deviation of provider 1 by

(p1, p3) = (2/3− δ, 2/3− aε− δ) ,

for two scalars ε and δ , which will induce a WE of (x1, x2, x3) = (2/3 + δ − ε, 1/3− δ, ε) . The corre-
sponding profit of provider 1 at this deviation is Π1 = 4/9− δ2 < 4/9, establishing that provider 1 is also
playing a best response and we have a pure strategy OE.

We next establish that, under an additional mild assumption, a pure strategy OE will never be at a
point of non-differentiability of the latency functions.

Assumption 4.2 There exists some s ∈ S such that li is real-valued and continuously differentiable for
all i ∈ Is .

Lemma 4.3 Let (pOE , xOE) be an OE with minj

{
pOE

j + lj(xOE
j )

}
< R and pOE

i xOE
i > 0 for some i.

Let Assumptions 2.1, 4.1 and 4.2 hold. Then

l+i (xOE
i ) = l−i (xOE

i ), ∀ i ∈ I,

where l+i (xOE
i ) and l−i (xOE

i ) are the right and left derivatives of the function li at xOE
i respectively.

Since the proof of this lemma is long, it is given in Appendix C. Note that Assumption 4.2 cannot be
dispensed with in this lemma. This is illustrated in the next example.

Example 4.3 Consider a two link network. Let the total flow be d = 1 and the reservation utility be
R = 2. Assume that the latency functions are given by

l1(x) = l2(x) =
{

0 if 0 ≤ x ≤ 1
2

2
(
x− 1

2

)
otherwise.

It can be verified that the vector (pOE
1 , pOE

2 ) = (1, 1), with (xOE
1 , xOE

2 ) = (1/2, 1/2) is a pure strategy
OE, and is at a point of non-differentiability for both latency functions.

We next provide an explicit characterization of the OE prices, which is essential in our efficiency
analysis in Section 5. The proof is given in Appendix D.

Proposition 4.4 Let (pOE , xOE) be an OE such that pOE
i xOE

i > 0 for some i ∈ I. Let Assumptions
2.1, 4.1, and 4.2 hold.
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a) Assume that minj

{
pOE

j + lj(xOE
j )

}
< R. Then, for all s ∈ S and i ∈ Is, we have

pOE
i =





xOE
i l′i(x

OE
i ), if l′j(x

OE
j ) = 0 for some j /∈ Is,

xOE
i l′i(x

OE
i ) +

P
j∈Is

xOE
jP

j /∈Is
1

l′
j
(xOE

j
)

, otherwise. (16)

b) Assume that minj

{
pOE

j + lj(xOE
j )

}
= R. Then, for all s ∈ S and i ∈ Is, we have

pOE
i ≥ xOE

i l−i (xOE
i ). (17)

Moreover, if there exists some i ∈ I such that Is = {i} for some s ∈ S, then

pOE
i ≤ xOE

i l+i (xOE
i ) +

xOE
i∑

j 6=i
1

l−j (xOE
j )

. (18)

If the latency functions li are all real-valued and continuously differentiable, then analysis of Karush-
Kuhn-Tucker conditions for oligopoly problem [problem (81) in Appendix D] immediately yields the
following result:

Corollary 4.1 Let (pOE , xOE) be an OE such that pOE
i xOE

i > 0 for some i ∈ I. Let Assumptions 2.1
and 4.1 hold. Assume also that li is real-valued and continuously differentiable for all i. Then, for all
s ∈ S and i ∈ Is, we have

pOE
i =





xOE
i l′i(x

OE
i ), if l′j(x

OE
j ) = 0 for some j /∈ Is,

min

{
R− li(xOE

i ) , xOE
i l′i(x

OE
i ) +

P
j∈Is

xOE
jP

j /∈Is
1

l′
j
(xOE

j
)

}
, otherwise.

(19)

This corollary also implies that in the two link case with real-valued and continuously differentiable
latency functions and with minimum effective cost less than R, the OE prices are

pOE
i = xOE

i (l′1(x
OE
1 ) + l′2(x

OE
2 )) (20)

as claimed in the Introduction.

5. Efficiency of Oligopoly Equilibria. This section contains our main results, providing tight
bounds on the inefficiency of oligopoly equilibria. We take as our measure of efficiency the ratio of the
social surplus of the equilibrium flow allocation to the social surplus of the social optimum, S(x∗)/S(xS),
where x∗ refers to the monopoly or the oligopoly equilibrium [cf. Eq. (8)]. Section 3 established that
the flow allocation at a monopoly equilibrium is a social optimum. Hence, in congestion games with
monopoly pricing, there is no efficiency loss. The following example shows that this is not necessarily the
case with oligopoly pricing.

Example 5.1 Consider a two link network. Let the total flow be d = 1 and the reservation utility be
R = 1. The latency functions are given by

l1(x) = 0, l2(x) =
3
2
x.

The unique social optimum for this example is xS = (1, 0). The unique ME (pME , xME) is xME = (1, 0)
and pME = (1, 1). As expected, the flow allocations at the social optimum and the ME are the same.
Next consider a duopoly where each of these links is owned by a different provider. Using Corollary 4.1
and Lemma 4.1, it follows that the flow allocation at the OE, xOE , satisfies

l1(xOE
1 ) + xOE

1 [l′1(x
OE
1 ) + l′2(x

OE
2 )] = l2(xOE

2 ) + xOE
2 [l′1(x

OE
1 ) + l′2(x

OE
2 )].

Solving this together with xOE
1 + xOE

2 = 1 shows that the flow allocation at the unique oligopoly equilib-
rium is xOE = (2/3, 1/3). The social surplus at the social optimum, the monopoly equilibrium, and the
oligopoly equilibrium are given by 1, 1, and 5/6, respectively.
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Before providing a more thorough analysis of the efficiency properties of the OE, the next proposition
proves that, as claimed in the Introduction and suggested by Example 5.1, a change in the market
structure from monopoly to duopoly in a two link network typically reduces efficiency.

Proposition 5.1 Consider a two link network where each link is owned by a different provider. Let
Assumption 2.1 hold. Let (pOE , xOE) be a pure strategy OE such that pOE

i xOE
i > 0 for some i ∈ I and

minj

{
pOE

j + lj(xOE
j )

}
< R. If l′1(x

OE
1 )/xOE

1 6= l′2(x
OE
2 )/xOE

2 , then S(xOE)/S(xS) < 1 .

Proof. Combining the OE prices with the WE conditions, we have

l1(xOE
1 ) + xOE

1 (l′1(x
OE
1 ) + l′2(x

OE
2 )) = l2(xOE

2 ) + xOE
2 (l′1(x

OE
1 ) + l′2(x

OE
2 )),

where we use the fact that minj

{
pOE

j + lj(xOE
j )

}
< R. Moreover, we can use optimality conditions (7)

to prove that a vector (xS
1 , xS

2 ) > 0 is a social optimum if and only if

l1(xS
1 ) + xS

1 l′1(x
S
1 ) = l2(xS

2 ) + xS
2 l′2(x

S
2 ).

Since l′1(x
OE
1 )/xOE

1 6= l′2(x
OE
2 )/xOE

2 , the result follows. ¤
We next quantify the efficiency of oligopoly equilibria by providing a tight bound on the efficiency loss

in congestion games with oligopoly pricing. As we have shown in Section 4, such games do not always
have a pure strategy OE. In the following, we first provide bounds on congestion games that have pure
strategy equilibria. We next study efficiency properties of mixed strategy equilibria.

5.1 Pure Strategy Equilibria. We consider price competition games that have pure strategy equi-
libria (this set includes, but is substantially larger than, games with linear latency functions, see Section
4). We consider latency functions that satisfy Assumptions 2.1, 4.1, and 4.2. Let LI denote the set
of latency functions for which the associated price competition game has a pure strategy OE and the
individual li’s satisfy Assumptions 2.1, 4.1, and 4.2.11 We refer to an element of the set LI by {li}i∈I .
Given a parallel link network with I links and latency functions {li}i∈I ∈ LI , let −−→OE({li}) denote the
set of flow allocations at an OE. We define the efficiency metric at some xOE ∈ −−→OE({li}) as

rI({li}, xOE) =
R

∑
i∈I xOE

i −∑
i∈I li(xOE

i )xOE
i

R
∑

i∈I xS
i −

∑
i∈I li(xS

i )xS
i

, (21)

where xS is a social optimum given the latency functions {li}i∈I and R is the reservation utility. In other
words, our efficiency metric is the ratio of the social surplus in an equilibrium relative to the surplus in the
social optimum. Following the literature on the “price of anarchy”, in particular [25], we are interested
in the worst performance in an oligopoly equilibrium, so we look for a lower bound on

inf
{li}∈LI

inf
xOE∈−−→OE({li})

rI({li}, xOE).

We first prove two lemmas, which reduce the set of latency functions that need to be considered in
bounding the efficiency metric. The next lemma allows us to use the oligopoly price characterization
given in Proposition 4.4.

Lemma 5.1 Let (pOE , xOE) be a pure strategy OE such that pOE
i xOE

i = 0 for all i ∈ I. Then xOE is a
social optimum.

Proof. We first show that li(xOE
i ) = 0 for all i ∈ I. Assume that lj(xOE

j ) > 0 for some j ∈ I. This
implies that xOE

j > 0 and therefore pOE
j = 0. Since lj(xOE

j ) > 0, it follows by Lemma 2.2 that for all
x ∈ W (p), we have xj = xOE

j . Consider increasing pOE
j to some small ε > 0. By the upper semicontinuity

of W (p), it follows that there exists some ε > 0 sufficiently small such that for all x ∈ W (ε, pOE
−j ), we have

|xj − xOE
j | < δ for some δ > 0. Moreover, by Proposition 2.2, we have, for all x ∈ W (ε, pOE

−j ), xi ≥ xOE
i

for all i 6= j. Hence, the profit of the provider that owns link j is strictly higher at price vector (ε, pOE
−j )

than at pOE , contradicting the fact that (pOE , xOE) is an OE.

11More explicitly, Assumption 4.1 implies that if any OE (pOE , xOE) associated with {li}i∈I has xOE
i > 0 and li(x

OE
i ) =

0, then Is = {i}.
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Clearly xOE
j > 0 for some j and hence mini∈I{pOE

i + li(xOE
i )} = pOE

j + lj(xOE
j ) = 0, which implies

by Lemma 4.1 that
∑

i∈I xOE
i = d. Using li(xOE

i ) = 0, and 0 ∈ ∂li(xOE
i ) for all i, we have

R− li(xOE
i )− xOE

i gli = R, ∀ i ∈ I,

for some gli ∈ ∂li(xOE
i ). Hence, xOE satisfies the sufficient optimality conditions for a social optimum

[cf. Eq. (7) with λS = R], and the result follows. ¤
The next lemma allows us to assume without loss of generality that R

∑
i∈I xS

i −
∑

i∈I li(xS
i )xS

i > 0
and

∑
i∈I xOE

i = d in the subsequent analysis.

Lemma 5.2 Let {li}i∈I ∈ LI . Assume that

either (i)
∑

i∈I li(xS
i )xS

i = R
∑

i∈I xS
i for some social optimum xs,

or (ii)
∑

i∈I xOE
i < d for some xOE ∈ −−→OE({li}).

Then every xOE ∈ −−→OE({li}) is a social optimum, implying that rI({li}, xOE) = 1.

Proof. Assume that
∑

i∈I li(xS
i )xS

i = R
∑

i∈I xS
i . Since xS is a social optimum and every xOE ∈−−→

OE({li}) is a feasible solution to the social problem [problem (6)], we have

0 =
∑

i∈I
(R− li(xS

i ))xS
i ≥

∑

i∈I
(R− li(xOE

i ))xOE
i , ∀ xOE ∈ −−→OE({li}).

By the definition of a WE, we have xOE
i ≥ 0 and R− li(xOE

i ) ≥ pOE
i ≥ 0 (where pOE

i is the price of link
i at the OE) for all i. This combined with the preceding relation shows that xOE is a social optimum.

Assume next that
∑

i∈I xOE
i < d for some xOE ∈ −−→

OE({li}). Let pOE be the associated OE price.
Assume that pOE

j xOE
j > 0 for some j ∈ I (otherwise we are done by Lemma 5.1). Since

∑
i∈I xOE

i < d, we
have by Lemma 4.1 that minj∈I{pj + lj(xOE

j } = R. Moreover, by Lemma 4.2, it follows that pix
OE
i > 0

for all i ∈ I. Hence, for all s ∈ S, ((pOE
i )i∈Is , x

OE) is an optimal solution of the problem

maximize((pi)i∈Is ,x)

∑

i∈Is

pixi

subject to pi + li(xi) = R, ∀ i ∈ Is,

pOE
i + li(xi) = R, ∀ i /∈ Is,∑

i∈I
xOE

i ≤ d.

Substituting for (pi)i∈Is in the above, we obtain

maximizex≥0

∑

i∈Is

(
R− li(xi)

)
xi

subject to xi ∈ Ti, ∀ i /∈ Is,∑

i∈I
xOE

i ≤ d,

where Ti = {xi | pOE
i + li(xi) = R} is either a singleton or a closed interval. Since this is a convex

problem, using the optimality conditions, we obtain

R− li(xOE
i )− xOE

i gli = 0, ∀ i ∈ Is, ∀ s ∈ S,

where gli ∈ ∂li(xOE
i ). By Eq. (7), it follows that xOE is a social optimum. ¤

This lemma implies that in finding a lower bound on the efficiency metric, we can restrict ourselves,
without loss of generality, to latency functions {li} ∈ LI such that

∑
i∈I li(xS

i )xS
i < R

∑
i∈I xS

i for some
social optimum xS , and

∑
i∈I xOE

i = d for all xOE ∈ −−→OE({li}). By the following lemma, we can also
assume that

∑
i∈I xS

i = d.

Lemma 5.3 For a set of latency functions {li}i∈I , let Assumption 2.1 hold. Let (pOE , xOE) be an OE
and xS be a social optimum. Then ∑

i∈I
xOE

i ≤
∑

i∈I
xS

i .
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Proof. Assume to arrive at a contradiction that
∑

i∈I xOE
i >

∑
i∈I xS

i . This implies that xOE
j > xS

j

for some j. We also have lj(xOE
j ) > lj(xS

j ). (Otherwise, we would have lj(xS
j ) = l′j(x

S
j ) = 0, which yields

a contradiction by the optimality conditions (7) and the fact that
∑

i∈I xS
i < d). Using the optimality

conditions (2) and (7), we obtain

R− lj(xOE
j )− pOE

j ≥ R− lj(xS
j )− xS

j glj ,

for some glj ∈ ∂lj(xS
j ). Combining the preceding with lj(xOE

j ) > lj(xS
j ) and pOE

j ≥ xOE
j l−j (xOE

j ) (cf.
Proposition 4.4), we see that

xOE
j l−j (xOE

j ) < xS
j glj ,

contradicting xOE
j > xS

j and completing the proof. ¤

5.1.1 Two Links. We first consider a parallel link network with two links owned by two service
providers. The next theorem provides a tight lower bound of 5/6 on r2({li}, xOE) [cf. Eq. (21)].

Starting with the two-link network is useful two reasons: first, the two-link network avoids the addi-
tional layer of optimization over the allocation of links to service providers in characterizing the bound
on inefficiency; and second, we will prove the result for the general case by reducing it to the proof of the
two-link case.

Although the details of the proof of the theorem are involved, the structure is straightforward. The
problem of finding a lower bound on r2({li}, xOE) is an infinite-dimensional problem, since the min-
imization is over latency functions. The proof first lower-bounds the infinite-dimensional problem by
the optimal value of a finite-dimensional optimization problem using the relations between the flows at
social optimum and equilibrium, and convexity of the latency functions. It then shows that the solution
will involve one of the links having zero latency. Finally, using this fact and the price characterization
from Proposition 4.4, it reduces the problem of characterizing the bound on inefficiency to a simple
minimization problem, with optimal value 5/6. An intuition for this value is provided below.

In the following, we assume without loss of generality that d = 1. Also recall that latency functions in
L2 satisfy Assumptions 2.1, 4.1, and 4.2.

Theorem 5.1 Consider a two link network where each link is owned by a different provider. Then

r2({li}, xOE) ≥ 5
6
, ∀ {li}i=1,2 ∈ L2, xOE ∈ −−→OE({li}), (22)

and the bound is tight, i.e., there exists {li}i=1,2 ∈ L2 and xOE ∈ −−→OE({li}) that attains the lower bound
in Eq. (22).

Proof. The proof follows a number of steps:

Step 1: We are interested in finding a lower bound for the problem

inf
{li}∈L2

inf
xOE∈−−→OE({li})

r2({li}, xOE). (23)

Given {li} ∈ L2, let xOE ∈ −−→OE({li}) and let xS be a social optimum. By Lemmas 5.2 and 5.3, we can
assume that

∑2
i=1 xOE

i =
∑2

i=1 xS
i = 1. This implies that there exists some i such that xOE

i < xS
i . Since

the problem is symmetric, we can restrict ourselves to {li} ∈ L2 such that xOE
1 < xS

1 , i.e., we restrict
ourselves to {li} ∈ L2 such that xOE

1 ≤ xS
1 − ε for some ε > 0. We claim

inf
{li}∈L2

inf
xOE∈−−→OE({li})

r2({li}, xOE) ≥ inf
ε>0

rOE
2,t (ε), (24)

where we define problem (Eε) as

rOE
2,t (ε) = minimize lS

i
, (lS

i
)′≥0

li, l′
i
≥0

yS
i

, yOE
i

≥0

R− l1y
OE
1 − l2y

OE
2

R− lS1 yS
1 − lS2 yS

2

(Eε)

subject to lSi ≤ yS
i (lSi )′, i = 1, 2, (25)



:
Mathematics of Operations Research 00(0), pp. xxx–xxx, c©20xx INFORMS 17

li ≤ yOE
i l′i, i = 1, 2, (26)

lS2 + yS
2 (lS2 )′ = lS1 + yS

1 (lS1 )′, (27)
lS1 + yS

1 (lS1 )′ ≤ R, (28)
2∑

i=1

yS
i ≤ 1, (29)

l1 + l′1(y
OE
2 − yS

2 ) ≤ lS1 , (30)
yOE
2 ≥ yS

2 + ε, (31)
2∑

i=1

yOE
i = 1, (32)

+ {Oligopoly Equilibrium Constraints}t, t = 1, 2.

Problem (Eε) can be viewed as a finite dimensional problem that captures the equilibrium and the
social optimum characteristics of the infinite dimensional problem given in Eq. (23). This implies that
instead of optimizing over the entire function li, we optimize over the possible values of li(·) and ∂li(·)
at the equilibrium and the social optimum, which we denote by li, l

′
i, l

S
i , (lSi )′ [i.e., (lSi )′ is a variable that

represents all possible values of gli ∈ ∂li(yS
i )]. The constraints of the problem guarantee that these values

satisfy the necessary optimality conditions for a social optimum and an OE. In particular, conditions (25)
and (26) capture the convexity assumption on li(·) by relating the values li, l

′
i and lSi , (lSi )′ [note that the

assumption li(0) = 0 is essential here]. Conditions (27) and (28) follow from the optimality conditions
for the social optimum. Condition (30) follows by the convexity of the function l1(·), which implies the
relation

l1(xS
1 ) ≥ l1(xOE

1 ) + gl1(x
S
1 − xOE

1 ),

where gl1 ∈ ∂l1(xOE
1 ). Using the relation

∑2
i=1 xOE

i =
∑2

i=1 xS
i = 1, we write the preceding constraint

as
l1(xS

1 ) ≥ l1(xOE
1 ) + gl1(x

OE
2 − xS

2 ),

which turns out to be more convenient in the analysis of the optimality conditions (see Step 3). Similarly,
condition (31) follows by the facts that we are considering {li} such that xOE

1 ≤ xS
1 − ε for some ε > 0

and
∑2

i=1 xOE
i =

∑2
i=1 xS

i = 1. Note that we use the relaxed constraint
∑2

i=1 xS
i ≤ 1 in the optimization

problem (which provides a lower bound to the original problem) since this makes the analysis of the
optimality conditions easier.

Finally, the last set of constraints are the necessary conditions for a pure strategy OE. These are
written separately for t = 1, 2, for the two cases characterized in Proposition 4.4, giving us two bounds,
which we will show to be equal.

More explicitly, the Oligopoly Equilibrium constraints are given by:

For t = 1: [corresponding to a lower bound for pure strategy OE, (pOE , yOE), with minj{pOE
j +lj(yOE

j )} <
R],

l1 + yOE
1 [l′1 + l′2] = l2 + yOE

2 [l′1 + l′2], (33)
l1 + yOE

1 [l′1 + l′2] ≤ R,

where l′1 = l′1(y
OE
1 ), l′2 = l′2(y

OE
2 ) [cf. Eq. (16)].

For t = 2: [corresponding to a lower bound for pure strategy OE, (pOE , yOE), with minj{pOE
j +lj(yOE

j )} =
R],

R− l2 ≥ yOE
2 l′2, (34)

R− l1 ≤ yOE
1 [l′1 + l′2] ,

where l′1 = l+1 (yOE
1 ) and l′2 = l−2 (yOE

2 ) [cf. Eqs. (17), (18)]. We will show in Step 4 that rOE
2,1 (ε) = rOE

2,2 (ε).

Note that given any feasible solution of problem (23), there exists some ε > 0 such that we have a
feasible solution for problem (Eε) with the same objective function value. Therefore, the optimum value
of problem infε>0 rOE

2,t (ε) is indeed a lower bound on the optimum value of problem (23).
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Step 2: Let (lSi , yS
i )i=1,2 satisfy Eqs. (25)-(29). We show that

lS1 yS
1 + lS2 yS

2 < R. (35)

Using Eqs. (27), (28), and (29), we obtain

lS1 yS
1 + lS2 yS

2 + (yS
1 )2(lS1 )′ + (yS

2 )2(lS2 )′ ≤ R.

If (yS
1 )2(lS1 )′ + (yS

2 )2(lS2 )′ > 0, then the result follows. If (yS
1 )2(lS1 )′ + (yS

2 )2(lS2 )′ = 0, then we have using
Eq. (25) that lSi =0 for all i, again showing the result.

Next, let (li, yOE
i )i=1,2 satisfy Eq. (32) and one of the Oligopoly Equilibrium constraints [i.e., Eqs.

(33) or (34)]. Using a similar argument, we can show that

l1y
OE
1 + l2y

OE
2 < R. (36)

Step 3: Let (l̄Si , (l̄Si )′, l̄i, l̄′i, ȳ
S
i , ȳOE

i ) denote an optimal solution of problem (E). We show that l̄Si = 0
for i = 1, 2.

We assign the Lagrange multipliers µS
i ≥ 0, λS , γS ≥ 0 to Eqs. (25), (27), (28), respectively, and θS ≥ 0

to Eq. (29). Using the first order optimality conditions, we obtain

ȳS
2

(R− l̄1ȳ
OE
1 − l̄2ȳ

OE
2 )

(R− l̄S1 ȳS
1 − l̄S2 ȳS

2 )2
+ µS

2 + λS = 0 if l̄S2 > 0 (37)

≥ 0 if l̄S2 = 0,

− µS
2 ȳS

2 + λS ȳS
2 = 0 if (l̄S2 )′ > 0 (38)

≥ 0 if (l̄S2 )′ = 0,

− µS
1 ȳS

1 − λS ȳS
1 + γS ȳS

1 = 0 if (l̄S1 )′ > 0 (39)
≥ 0 if (l̄S1 )′ = 0,

l̄S1
(R− l̄1ȳ

OE
1 − l̄2ȳ

OE
2 )

(R− l̄S1 ȳS
1 − l̄S2 ȳS

2 )2
− µS

1 (l̄S1 )′ − λS(l̄S1 )′ + γS(l̄S1 )′ + θS = 0 if ȳS
1 > 0 (40)

≥ 0 if ȳS
1 = 0.

We first show that l̄S2 = 0. If ȳS
2 = 0 or (l̄S2 )′ = 0, we are done by Eq. (25). Assume that ȳS

2 > 0 and
(l̄S2 )′ > 0. By Eq. (38), this implies that λS = µS

2 ≥ 0. We claim that in this case Eq. (37) cannot be
equal to 0. Assume to arrive at a contradiction that it is. Using Step 2 and the fact that ȳS

2 > 0, we have
µS

2 + λS < 0, which is a contradiction and shows that Eq. (37) is strictly positive. This establishes that
l̄S2 = 0.

We next show that l̄S1 = 0. If ȳS
1 = 0 or (l̄S1 )′ = 0, we are done by Eq. (25). Assume that ȳS

1 > 0 and
(l̄S1 )′ > 0. By Eq. (39), this implies that −µS

1 − λS + γS = 0. Substituting this in Eq. (40) and using
θS ≥ 0 together with Eq. (36), we obtain l̄S1 = 0.

Step 4: Since l̄S1 = 0, in view of Eq. (30), we have l̄1 = 0. Moreover, since ȳOE
2 ≥ ȳS

2 + ε, by Eq. (30),
we have l̄′1 = 0. Using in addition l̄S2 = 0, we see that for all ε > 0 and t = 2,

rOE
2,2 (ε) = minimize l2,l′2≥0

yOE
1 , yOE

2 ≥0

1− l2y
OE
2

R
(41)

subject to l2 ≤ yOE
2 l′2,

l2 + yOE
2 l′2 ≤ R,

yOE
1 l′2 ≥ R.
2∑

i=1

yOE
i = 1,

which follows by Eq. (34). It is straightforward to show that the optimal solution of this problem is
(l̄2, l̄′2, ȳ

OE
1 , ȳOE

2 ) = (R
2 , 3R

2 , 2
3 , 1

3 ) with optimal value 5/6. [One can write a similar optimization problem
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for t = 1 using the constraints in (33) and show that the optimal value is still 5/6.] Therefore it follows
that rOE

2,t (ε) = 5/6 for t = 1, 2 and all ε > 0. By Eq. (24), this implies that

inf
{li}∈L2

inf
xOE∈−−→OE({li})

r2({li}, xOE) ≥ 5
6
.

We next show that this bound is tight. Consider the latency functions l1(x) = 0, and l2(x) = 3
2x.

As shown in Example 5.1, the corresponding OE flow vector is xOE = ( 2
3 , 1

3 ), and the social optimum is
xS = (1, 0). Hence, the efficiency metric for these latency functions is r2({li}, xOE) = 5/6, thus showing
that the bound is tight. ¤

It is instructive to briefly consider the intuition underlying the 5/6 bound. The efficiency loss is
maximized when as much of the traffic as possible goes through route 2 and when the latency on route
2 is as high as possible, i.e., when x2l2(x2) is maximized. But these two requirements are in conflict in
the sense that when the latency on route 2 is high, there will be less traffic on that route, because in a
WE we must have p1 + l1(x1) = p2 + l2(x2). Moreover, with zero latency on route 1, equilibrium prices
will satisfy p1 = x1l

′
2(x2) and p2 = x2l

′
2(x2). So the problem is to maximize x2l2(x2) while satisfying

x1l
′
2(x2) = x2l

′
2(x2) + l2(x2). This constraint immediately implies that x1 > x2, and since l2(x2) ≤ R,

the efficiency loss can never exceed 1/2. But the bound is in fact much tighter than this. Since x1 > x2,
convexity of l2, i.e., a greater l′2 given l2, is harmful for the objective, since it tends to increase x1 (as the
inspection of the condition x1l

′
2(x2) = x2l

′
2(x2) + l2(x2) shows). This reasoning suggests that the worst

case will happen when l2 is linear, which is exactly the case in our Example 5.1, leading to the efficiency
loss of 1/6 and the bound of 5/6.

5.1.2 Multiple Links. We next consider the general case where we have a parallel link network
with I links and S service providers, and provider s owns a set of links Is ⊂ I. It can be seen by
augmenting a two link network with links that have latency functions

l(x) =
{

0 if x = 0,
∞ otherwise,

that the lower bound in the general network case can be no higher than 5/6. However, this is a degenerate
example in the sense that at the OE, the flows of the links with latency functions given above are equal
to 0. We next give an example of an I link network which has positive flows on all links at the OE and
an efficiency metric of 5/6.

Example 5.2 Consider an I link network where each link is owned by a different provider. Let the
total flow be d = 1 and the reservation utility be R = 1. The latency functions are given by

l1(x) = 0, li(x) =
3
2
(I − 1)x, i = 2, . . . , I.

The unique social optimum for this example is xS = [1, 0, . . . , 0]. It can be seen that the flow allocation
at the unique OE is

xOE =
[
2
3
,

1
3(I − 1)

, . . . ,
1

3(I − 1)

]
.

Hence, the efficiency metric for this example is

rI({li}, xOE) =
5
6
.

The next theorem generalizes Theorem 5.1 to a parallel link network with I ≥ 2 links. The new feature
here is not only the existence of more than two links, but also the fact that to find the worst-case bound,
we have to optimize over the allocation of links across service providers. The strategy of the proof is
again to reduce the infinite-dimensional program to a finite-dimensional optimization problem, and then
show that it reduces to the case in Theorem 5.1.

Theorem 5.2 Consider a general parallel link network with I links and S service providers, where
provider s owns a set of links Is ⊂ I. Then

rI({li}, xOE) ≥ 5
6
, ∀ {li}i∈I ∈ LI , xOE ∈ −−→OE({li}), (42)
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and the bound is tight, i.e., there exists {li}i∈I ∈ LI and xOE ∈ −−→OE({li}) that attains the lower bound
in Eq. (57).

Proof. The proof again follows a number of steps:

Step 1: Consider the problem

inf
{li}∈LI

inf
xOE∈−−→OE({li})

rI({li}, xOE). (43)

Given {li} ∈ LI , let xOE ∈ −−→
OE({li}) and let xS be a social optimum. By Lemmas 5.2 and 5.3, we

can assume without loss of generality that
∑

i∈I xOE
i =

∑
i∈I xS

i = 1. Hence there exists some i such
that xOE

i < xS
i . Without loss of any generality, we restrict ourselves to the set of latency functions

{li}i∈I ∈ LI such that xOE
1 < xS

1 . Similar to the proof of Proposition 5.1, it can be seen that Problem
(43) can be lower bounded by

inf
{li}∈LI

inf
xOE∈−−→OE({li})

rI({li}, xOE) ≥ inf
ε>0

rOE
I,t (ε),

where rOE
I,t (ε) is the optimum value of the following finite dimensional problem, which we denote by (Eε

I):

rOE
I,t (ε) = minimize lS

i
,(lS

i
)′≥0

li,l′
i
≥0

yS
i

,yOE
i

≥0
Is⊂I

R−∑
i∈I liy

OE
i

R−∑
i∈I lsi y

S
i

(Eε
I)

subject to lSi ≤ yS
i (lSi )′, i = 1, . . . , I, (44)

lSi + yS
i (lSi )′ = lS1 + yS

1 (lS1 )′, i = 2, . . . , I,

lS1 + yS
1 (lS1 )′ ≤ R,∑

i∈I
yS

i ≤ 1

l1 + l′1
( ∑

i 6=1

yOE
i −

∑

i 6=1

yS
i

)
≤ lS1 , (45)

∑

i 6=1

yOE
i ≥

∑

i 6=1

yS
i + ε, (46)

∑

i∈I
yOE

i = 1,

Is = {1} for some s if lS1 = 0, (47)
+ {Oligopoly Equilibrium Constraints}t, t = 1, 2.

The new feature relative to the two link case is the presence of Is’s as choice variables to allow a choice
over possible distribution of links across service providers (with the constraint

⋃
s Is = I left implicit).

The oligopoly equilibrium constraints, which are again written separately for t = 1, 2 for the two cases
in Proposition 4.4, depend on Ii’s. In addition, we have added constraint (47) to impose Assumption 2
(recall that xOE

1 > 0 by Lemma 4.2).

Step 2: Let (l̄Si , (l̄Si )′, l̄i, l̄′i, ȳ
S
i , ȳOE

i ) be an optimal solution of the preceding problem. Note that the
constraints that involve (lSi , (lSi )′, yS

i ) for i = 2, . . . , I are decoupled and have the same structure as in
problem (Eε). Therefore, by the same argument used to show l̄S2 = 0 in Step 3 of the proof of Proposition
5.1, one can show that l̄Si = 0 for each i = 2, . . . , I. Similarly, one can extend the same argument given
in the proof of Proposition 5.1 to show that l̄S1 = 0.

Step 3: Since l̄S1 = 0, it follows that l̄1 = 0 and l̄′1 = 0 [cf. Eqs. (45) and (46)], and also Is = {1}.
Therefore, using the price characterization from Proposition 4.4, the structure of the problem simplifies
to

rOE
I,t ≥ minimize li,l′

i
≥0, i=2,...,I

yOE
i

≥0, i=1,...,I

1−
∑I

i=2 liy
OE
i

R
(48)

subject to li ≤ yOE
i l′i, i = 2, . . . , I, (49)

li + yOE
i l′i ≤ R, i = 2, . . . , I, (50)
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yOE
1∑I

j=2
1
l′j

≥ R, (51)

∑

i∈I
yOE

i = 1,

where we have also used the fact that l̄Si = 0, for i = 2, . . . , I.

The first set of constraints are due to the convexity assumptions on the li. Similar to the two link
case, the second set of constraints are due to the oligopoly equilibrium constraints (given l̄′1 = 0, see the
OE price characterization in Proposition 4.4).

Step 4: Let ((l̄i, l̄′i)i=2,...,I , (ȳOE
i )i=1,...,I) denote an optimal solution of the preceding problem. Assign

the Lagrange multipliers µi ≥ 0, λi ≥ 0, i = 2, . . . , I, and γ ≥ 0 and θ consecutively to the constraints of
the problem. We will show that l̄i = ȳOE

i l̄′i for all i = 2, . . . , I. Assume the contrary, i.e., l̄i < ȳOE
i l̄′i for

some i = 2, . . . , I. This implies that µi = 0. Using the optimality conditions, we have

− γ∑I
j=2

1
l̄′j

+ θ = 0 if ȳOE
1 > 0 (52)

≥ 0 if ȳOE
1 = 0,

− ȳOE
i

R
+ λi = 0 if l̄i > 0 (53)

≥ 0 if l̄i = 0,

− l̄i
R

+ λi l̄
′
i + θ = 0 if ȳOE

i > 0 (54)

≥ 0 if ȳOE
i = 0.

By feasibility [cf. Eq. (51)], we have ȳOE
1 > 0. Moreover, by our assumption [l̄i < ȳOE

i l̄′i], we have ȳOE
i > 0

and l̄′i > 0. Eq. (52) implies that θ ≥ 0. We also have from Eq. (53) that λi ≥ ȳOE
i /R, which when

substituted in Eq. (54) yields a contradiction in view of θ ≥ 0.

Hence, for all i = 2, . . . , I, we have l̄i = ȳOE
i l̄′i. It is also straightforward to see that constraint (50) is

binding at the optimal solution (otherwise it would be possible to decrease the objective function value),
which implies that l̄i = R/2 and ȳOE

i l̄′i = R/2 for all i = 2, . . . , I. By using the transformation of variables

yOE =
I∑

i=2

yOE
i , and

1
l′

=
I∑

i=2

1
l′i

,

it can be seen that the optimal value of problem (48) is the same as the optimal value of the following
problem:

minimize l,l′≥0
yOE
1 , yOE≥0

1− lyOE

R

subject to l ≤ yOEl′,

l + yOEl′ ≤ R,

yOE
1 l′ ≥ R.

yOE
1 + yOE = 1,

which is identical to problem (41) in the two-link case, showing that for all t = 1, 2 and all ε > 0,

rOE
I,t (ε) ≥ 5

6
.

Hence, we have

inf
{li}i∈I∈LI

inf
xOE∈−−→OE({li})

rI({li}, xOE) ≥ 5
6
.

Finally, Example 5.2 shows that the preceding bound is tight. ¤
A notable feature of Example 5.2 and this theorem is that the (tight) lower bound on inefficiency is

independent of the number of links I. Thus arbitrarily large networks can feature as much inefficiency
as small networks.12

12This result superficially contrasts with theorems in the economics literature that large oligopolistic markets approach

competitive behavior (e.g., [41], [17], [35], [54], [55]). These theorems do not consider arbitrary large markets, but replicas
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5.2 Mixed Strategy Equilibria. As we illustrated in Section 4, pure strategy oligopoly equilibrium
may fail to exist (cf. Example 3). Nevertheless, as shown in Proposition 4.3, such games always have a
mixed strategy equilibrium. In this section, we discuss the efficiency properties of mixed strategy OE.

Although there has been much less interest in the efficiency properties of mixed strategy equilibria,
two different types of efficiency metrics present themselves as natural candidates. The first considers
the worst realization of the strategies, while the second focuses on average inefficiency across different
realizations of mixed strategies. We refer to the first metric as worst-realization metric, and denote it by
r̃W
I ({li}), and to the second as the average metric, and denote it by r̃A

I ({li}).
Given a set of latency functions {li}i∈I , let OM({li}) denote the set of mixed strategy equilibria. For

some µ ∈ OM({li}), let Mi(µ) denote the support of µi as defined before in Example 3 [in particular,
recall that Mi = {p | µ′i(p) > 0}]. Further, let

−−→
OEm({li}, µ) = {x | x ∈ W (p), for some p s.t. pi ∈ Mi(µ) for all i}.

We define the worst-realization efficiency metric as

r̃W
I ({li}) = inf

{li}∈LI

inf
µ∈OM({li})

inf
xOE∈−−→OEm({li},µ)

rI({li}, xOE),

where rI is given by Eq. (21).

Similarly, the average efficiency metric is defined as

r̃A
I ({li}) = inf

{li}∈LI

inf
µ∈OM({li})

∫
· · ·

∫
rI({li}, xOE (p))dµ1 · · · dµS .

In the next example, we show that the worst-realization efficiency metric for games with no pure
strategy equilibrium can be arbitrarily low.

Example 3 (continued) Consider the prices p1 = R and p2 = R(1 − δ) that satisfy pi ∈ Mi for the
unique mixed strategy equilibrium given in Example 3 as ε → 0. The WE at these prices is given by

xOE = (1− δ, δ) ,

and the worst-realization efficiency metric is

r̃W
I ({li}) = 1− δ2,

which as δ → 1 goes to 0.

On the other hand, as ε → 0, the average efficiency metric, r̃A
I ({li}) is given by

r̃A
I ({li}) =

∫ R

(1−δ)R

∫ R

(1−δ)R

r (p1, p2) dµ1 × dµ2,

where r (p1, p2) is the inefficiency at the price vector (p1, p2) at the unique mixed strategy OE characterized
above. Therefore:

r (p1, p2) =
{

1 if p1 < p2

1− δ(p1−p2)
R if p1 > p2

,

and thus,

r̃A
I ({li}) → 1−

∫ R

(1−δ)R

∫ R

(1−δ)R

δ (p1 − p2)
R

dµ1 × dµ2

Thus to calculate r̃A
I ({li}), we need to compute the last integral. Denoting this by A, we have

A =
δ

R

∫ R

(1−δ)R

∫ R

p2

(p1 − p2) dµ1 × dµ2

=
δ

R

[∫ R

(1−δ)R

∫ p1

(1−δ)R

p1dµ2 × dµ1 −
∫ R

(1−δ)R

∫ R

p2

p2dµ1 × dµ2

]

=
δ

R

[∫ R

(1−δ)R

p1

(
1
δ
− (1− δ) R

δp1

)
dµ1 (p1)−

∫ R

(1−δ)R

(1− δ) Rdµ2 (p2)

]

of a given market structure. In our model as well, if we take a given network and replicate it n times (i.e., increase d to

nd and the number of service providers by n), then as n → ∞, the efficiency metric tends to 1. In fact, in Example 5.1,

replicating the network once, i.e., n = 2, achieves full efficiency, because of Bertrand competition between two oligopolists

with zero latencies.
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Now recall that µ1 has an atom equal to 1− δ at R, so

A =
δ

R

[
R (1− δ) +

∫ R

(1−δ)R

p1

(
1
δ
− (1− δ)R

δp1

)(
(1− δ)R

p2
1

)
dp1 −R(1− δ)

]

= (1− δ)2 − (1− δ) + (1− δ)[ln R− ln((1− δ)R)]
= − (1− δ) δ − (1− δ) ln (1− δ)

It can be calculated that A reaches a maximum of approximately 0.16 for δ ≈ 0.8. Therefore, in this
example, r̃A

I ({li}) reaches 0.84 ≈ 5/6 (in fact, slightly greater than 5/6). We conjecture, but are unable
to prove, that 5/6 is also a lower bound for the average efficiency metric, r̃A

I ({li}), in mixed strategy OE.
This is left as an open research question.13

6. Bound for Positive Latency at Zero Flow. In this section, we relax the assumption li(0) = 0,
and allow positive latency at zero flow. To simplify the exposition in this section, we focus on continuously
differentiable latency functions, but as our previous analysis indicates, the main result, Theorem 6.1, holds
for general convex latency functions.

Assumption 6.1 For each i ∈ I, the latency function li : [0,∞) 7→ [0,∞) is continuously differentiable,
convex, and nondecreasing.

We first provide an equilibrium price characterization, which generalizes Corollary 4.1.

Proposition 6.1 Let (pOE , xOE) be an OE such that pOE
i xOE

i > 0 for some i ∈ I. Define the index
set

N = {j ∈ I | pOE
i + li(xOE

i ) < pOE
j + lj(0)}. (55)

Let Assumptions 4.1 and 6.1 hold. Then, for all s ∈ S and i ∈ Is and i /∈ N , we have

pOE
i =





xOE
i l′i(x

OE
i ), if l′j(x

OE
j ) = 0 for some

j /∈ Is, j /∈ N
min

{
R− li(xOE

i ) , xOE
i l′i(x

OE
i ) +

P
j∈Is

xOE
jP

j /∈Is
j /∈N

1
l′
j
(xOE

j
)

}
, otherwise.

(56)

The proof of this theorem follows immediately from the proof of Corollary 4.1. In particular, N is the
set of all latencies where xOE

i = 0, so that any i ∈ N can be discarded when considering the individual
optimization problem of each service provider. In what follows, let L∗I denote the set of latency functions
for which the associated price competition game has a pure strategy OE and the individual li’s satisfy
Assumptions 4.1 and 6.1.

Theorem 6.1 Consider a general parallel link network with I links and S service providers, where
provider s owns a set of links Is ⊂ I. Then

rI({li}, xOE) ≥ 2
√

2− 2, ∀ {li}i∈I ∈ L∗I , xOE ∈ −−→OE({li}), (57)

and the bound is tight, i.e., there exists {li}i∈I ∈ L∗I and xOE ∈ −−→OE({li}) that attains the lower bound
in Eq. (57).

Proof. The proof follows those of Theorems 5.1 and 5.2 closely. Once again, the problem (23) is
lower-bounded by a modified version of the finite dimensional problem (Eε

I) (see the proof of Theorem
2), in which we introduce additional variables l0i ≥ 0, which represent the value of the latency function,
li(·) at 0. Using the convexity of the latency functions, we replace constraint (44) by

lSi ≤ yS
i (lSi )′ + l0i .

Following the same line of argument, it can be seen that problem (23) can further be bounded below by
a problem identical to (48) except that constraint (49) is replaced by

li ≤ yOE
i l′i + l0i .

13As pointed out by one of our anonymous referees, the intuition provided following Theorem 5.1 suggests that even in

the case of a mixed strategy equilibrium, the average efficiency metric should not fall below 1/2. Nevertheless, proving this

conjecture has not been possible because the equilibrium conditions for a mixed strategy OE are considerably more involved

than those for a pure strategy only.
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Using a similar transformation, this problem can be seen to be equivalent to

minimize l,l′,l0≥0
yOE
1 , yOE≥0

1− lyOE

R

subject to l ≤ yOEl′ + l0,

l + yOEl′ ≤ R,

yOE
1 l′ ≥ R.

yOE
1 + yOE = 1.

The optimal solution of this problem is (l̄, l̄′, l̄0, ȳOE
1 , ȳOE) = (2 − √2,

√
2, 3 − 2

√
2,
√

2/2, 1 − √2/2)
and the corresponding optimal value is 2

√
2− 2.

We next show that this bound is tight. Consider an I link parallel network where each link is owned
by a different provider. Let the total flow be d = 1 and the reservation utility be R = 1. The latency
functions are given by

l1(x) = 0, and li(x) = (I − 1)
√

2x + (3− 2
√

2), ∀ i = 2, . . . , I.

The corresponding OE flow vector is

xOE =

[√
2

2
,

1
I − 1

(
1−

√
2

2

)
, . . . ,

1
I − 1

(
1−

√
2

2

)]
,

and the social optimum is xS = (1, 0). Hence, the efficiency metric for these latency functions is
rI({li}, xOE) = 2

√
2− 2, thus showing that

min
{li}i∈I∈L∗I

min
xOE∈−−→OE({li})

rI({li}, xOE) = 2
√

2− 2.

¤
It is interesting to note that 2

√
2− 2 ≈ .828 ≤ 5/6. Therefore, relaxing the assumption li(0) = 0 has a

small effect on the worst-case performance of a pure strategy OE. In terms of the intuition we provided
for Theorem 5.1, the fact that l2(0) can be positive allows us to increase l2 slightly for a given l′2, leading
to a small deterioration in performance.

7. Conclusions. In this paper, we presented an analysis of competition in congested networks.
We established a number of results. First, despite the potential inefficiencies of flow-routing without
prices, price-setting by a monopolist always achieves the social optimum. Second, and in contrast to the
monopoly result, oligopoly equilibria where multiple service providers compete are typically inefficient.
Third and most importantly, when latency at zero flow is zero, there is a tight bound of 5/6 on inefficiency
in pure strategy oligopoly equilibria. When latency at zero flow can be positive, the bound is slightly
lower at 2

√
2− 2 ≈ .828. These bounds apply even for arbitrarily large parallel link networks.

A number of concluding comments are useful:

• Our motivating example has been the flow of information in a communication network, but
our results apply equally to traffic assignment problems and oligopoly in product markets with
negative externalities, congestion or snob effects (as originally suggested by Veblen [52]).

• Our analysis has been quite general, in particular, allowing for constant latencies and capacity
constraints. Some of the analysis simplifies considerably when we specialize the network to
increasing and real-valued (non-capacity constrained) latencies.

• On the other hand, our analysis has been simplified by our focus on parallel link networks. We
have started extending this analysis in ongoing work [2] for topologies consisting of parallel-serial
structure. This parallel-serial topology, however, rules out many interesting cases, including those
that could potentially lead to Braess’ paradox, and the analysis for more general topologies is an
open area for future research.

• One simplifying feature of our analysis is the assumption that users are “homogeneous” in the
sense that the same reservation utility, R, applies to all users. It is possible to conduct a similar
analysis with elastic and heterogeneous users (or traffic), but this raises a number of new and
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exciting challenges. For example, monopoly or oligopoly providers might want to use non-linear
pricing (designed as a mechanism subject to incentive compatibility constraints of different types
of users, e.g., [57]). This is an important research area for understanding equilibria in communi-
cation networks, where users often have heterogeneous quality of service requirements.

• While we have established that worst-realization efficiency metric in mixed strategy oligopoly
equilibria can be arbitrarily low, a bound for average efficiency metric is an open research question.

Appendix A. Proof of Proposition 3.1. If (pME , xME) is an ME, then it is an SPE by definition.
Let (pME , xME) be an SPE. Assume to arrive at a contradiction that there exists some p ≥ 0 and x̃ ∈ W (p)
such that

Π(pME , xME) < Π(p, x̃). (58)
If W (p) is a singleton, we immediately obtain a contradiction. Assume that W (p) is not a singleton and∑

i∈I xi =
∑

i∈I x̄i for all x, x̄ ∈ W (p). By Lemma 2.2, it follows that Π(p, x̃) = Π(p, x) for all x ∈ W (p),
which contradicts the fact that (pME , xME) is an SPE.

Assume finally that W (p) is not a singleton and
∑

i∈I
x̂i <

∑

i∈I
x̄i, for some x̂, x̄ ∈ W (p). (59)

For this case, we have pi = R for all i ∈ Ī, where

Ī = {i ∈ I | ∃ x, x̄ ∈ W (p) with xi 6= x̄i},
[cf. Eq. (5)]. To see this, note that since

∑
i∈I x̂i < d, the WE optimality conditions for x̂ [cf. Eq. (2)]

hold with λ = 0. Assume that p̃ < R. By Lemma 2.2, li(xi) = 0 for all i ∈ Ī. If bCi = ∞ for some i ∈ Ī,
we get a contradiction by Eq. (2). Otherwise, Eq. (2) implies that x̂i = bCi for all i ∈ Ī. Since x̂i = x̄i

for all i /∈ Ī, this contradicts Eq. (59).

We show that given δ > 0, there exists some ε > 0 such that

Π(pε, xε) ≥ Π(p, x̃)− δ, ∀ xε ∈ W (pε), (60)

where

pε
i =

{
pi i /∈ Ī,
R− ε i ∈ Ī.

(61)

The preceding relation together with Eq. (58) contradicts the fact that (pME , xME) is an SPE, thus
establishing our claim.

We first show that ∑

i∈Ī
xε

i ≥
∑

i∈Ī
x̃i. (62)

Assume to arrive at a contradiction that ∑

i∈Ī
xε

i <
∑

i∈Ī
x̃i. (63)

This implies that there exists some j ∈ Ī such that xε
j < x̃j (which also implies that xε

j < bCj ). We use
the WE optimality conditions [Eq. (2)] for x̃ and xε to obtain the following:

• There exists some λ̃ ≥ 0 such that for some i ∈ Ī,

R− li(x̃i)− pi = 0 ≥ λ̃,

where we used the facts that li(x̃i) = 0, pi = R [cf. Lemma 2.2] and x̃i > 0 for some i ∈ Ī [cf.
Eq. (58)]. Since λ̃ = 0, we have, for all i /∈ Ī,

R− li(x̃i)− pi ≤ 0 if x̃i ≤ bCi , (64)
≥ 0 if x̃i = bCi .

• There exists some λε ≥ 0 such that
ε− lj(xε

j) ≤ λε, (65)
(since xε

j < x̃j and pj = R− ε), and for all i /∈ Ī,

R− li(xε
i)− pi ≤ λε if xε

i = 0, (66)
≥ λε if xε

i > 0.
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If λε = 0, then by Eq. (65) and the fact that lj(x̃j) = 0 (Lemma 2.2), we obtain

lj(xε
j) ≥ ε > 0 = lj(x̃j),

which is a contradiction. If λε > 0, then
∑

i∈I xε
i = d. Assume first that xε

i ≤ x̃i for all i /∈ Ī. Then
∑

i∈Ī
xε

i = d−
∑

i/∈Ī
xε

i ≥ d−
∑

i/∈Ī
x̃i ≥

∑

i∈Ī
x̃i,

which yields a contradiction by Eq. (63). Assume next that xε
k > x̃k for some k /∈ Ī. By Eqs. (64) and

(66), we have
R− lk(xε

k)− pk ≥ λε,

R− lk(x̃k)− pk ≤ 0,

which together implies that lk(x̃k) > lk(xε
k), yielding a contradiction and proving Eq. (62).

Since W (p) is an upper semicontinuous correspondence and the ith component of W (p) is uniquely
defined for all i /∈ Ī, it follows that xi(·) is continuous at p for all i /∈ Ī. Together with Eq. (5), this
implies that

Π(pε, xε) =
∑

i/∈Ī
pix̃i +

∑

i/∈Ī
pi(xε

i − x̃i) +
∑

i∈Ī
(R− ε)xε

i

≥
∑

i/∈Ī
pix̃i +

∑

i∈Ī
(R− ε)x̃i +

∑

i/∈Ī
pi(xε

i − x̃i)

=
∑

i∈I
pix̃i − ε

∑

i∈Ī
x̃i +

∑

i/∈Ī
pi(xε

i − x̃i)

≥
∑

i∈I
pix̃i − δ,

where the last inequality holds for sufficiently small ε, establishing (60), and completing the proof.

Appendix B. Proof of Proposition 4.2. For all i ∈ I, let li(x) = aix. Define the set

I0 = {i ∈ I | ai = 0}.
Let I0 denote the cardinality of set I0. There are two cases to consider:

Case 1: I0 ≥ 2: Assume that there exist i, j ∈ I0 such that i ∈ Is and j ∈ Is′ for some s 6= s′ ∈ S.
Then it can be seen that a vector (pOE , xOE) with pOE

i = 0 for all i ∈ I0 and xOE ∈ W (pOE) is an OE.
Assume next that for all i ∈ I0, we have i ∈ Is for some s ∈ S. Then, we can assume without loss of
generality that provider s owns a single link i′, which has ai′ = 0 and consider the case I0 = 1.

Case 2: I0 ≤ 1: Let Bs(pOE
−s ) be the set of pOE

s such that

(pOE
s , xOE) ∈ arg max

ps≥0
x∈W (ps,pOE

−s
)

∑

i∈Is

pixi. (67)

Let B(pOE) = [Bs(pOE
−s )]s∈S . By the Theorem of the Maximum ([7]), it follows that B(pOE) is an upper

semicontinuous correspondence. We next show that it is convex-valued.

Lemma B.1 For all s ∈ S and pOE
−s ≥ 0, the set Bs(pOE

−s ) is a convex set.

Proof. For some s ∈ S and pOE
−s ≥ 0, let ps ∈ Bs(pOE

−s ) and p̄s ∈ Bs(pOE
−s ) such that (ps, x) and

(p̄s, x̄) are optimal solutions of problem (67). Denote xs = [xi]i∈Is and x̄s = [x̄i]i∈Is . If pT
s xs = p̄T

s x̄s = 0,
then the vector γps + (1− γ)p̄s ∈ Bs(pOE

−s ) for all γ ∈ [0, 1], and we are done.

Assume that pT
s xs = p̄T

s x̄s > 0. We will show that ps = p̄s. Using a similar argument as in the proof
of Lemma 4.2(b), it follows that xi > 0 for all i ∈ Is and x̄i > 0 for all i ∈ Is. By checking the first order
optimality conditions of problem (67) and using the linearity of the latency functions, it can be seen that
pi = p for all i ∈ Is and p̄i = p̄ for all i ∈ Is. Assume to arrive at a contradiction that p > p̄. Since
pT

s xs = p̄T
s x̄s, this implies that

∑
i∈Is

xi <
∑

i∈Is
x̄i. There are two cases to consider:
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• pi + aixi < p̄i + aix̄i for i ∈ Is:
Since pi +aixi < R, it follows by the definition of a Wardrop equilibrium that

∑
i∈I xi = d. One

can also immediately see that x̄j ≥ xj for all j /∈ Is. Together with
∑

i∈Is
xi <

∑
i∈Is

x̄i, this
implies that

∑
i∈I xi <

∑
i∈I x̄i, which contradicts the fact that

∑
i∈I xi = d.

• pi + aixi ≥ p̄i + aix̄i for i ∈ Is:
If both effective costs are equal to R, i.e.,

pi + aixi = p̄i + aix̄i = R, ∀ i ∈ Is,

then the optimization problem of provider i [cf. Problem 67] can be shown to have a strictly
concave objective function over polyhedral constraints, thus implying that p = p̄.
Assume next that pi + aixi ≤ R, and p̄i + aix̄i < R. Define the sets

N = {j /∈ Is | pi + li(xi) < pOE
j },

N̄ = {j /∈ Is | p̄i + li(x̄i) < pOE
j }.

The first order conditions of problem (67) in this case yields

pi ≤ aixi +

∑
j∈Is

xj∑
j /∈Is
j /∈N

1
aj

, ∀ i ∈ Is,

p̄i = aix̄i +

∑
j∈Is

x̄j∑
j /∈Is
j /∈N̄

1
aj

, ∀ i ∈ Is.

Moreover, in view of the relation between the effective costs, it can be seen that N ⊂ N̄ . Since∑
i∈Is

xi <
∑

i∈Is
x̄i, we have xi < x̄i for some i ∈ Is, which by the preceding implies that

pi < p̄i, yielding a contradiction.

¤
Proof of Proposition 4.2: Since B(pOE) is an upper semicontinuous and convex-valued correspondence,
we can use Kakutani’s fixed point theorem to assert the existence of a pOE such that B(pOE) = pOE

(see [7]). To complete the proof, it remains to show that there exists xOE ∈ W (pOE) such that Eq. (10)
holds.

If I0 = ∅, we have by Proposition 2.3 that W (pOE) is a singleton, and therefore Eq. (10) holds and
(pOE ,W (pOE)) is an OE.

Assume finally that exactly one of the ai’s (without loss of generality a1) is equal to 0. We show that
for all x̄, x̃ ∈ W (pOE), we have x̄i = x̃i, for all i 6= 1. Let EC(x, pOE) = minj{lj(xj) + pOE

j }. If at least
one of

EC(x̃, pOE) < R, or EC(x̄, pOE) < R

holds, then one can show that
∑

i∈I x̃i =
∑

i∈I x̄i = d. Substituting x1 = d −∑
i∈I, i 6=1 xi in problem

(4), we see that the objective function of problem (4) is strictly convex in x−1 = [xi]i 6=1, thus showing
that x̃ = x̄. If both EC(x̃, pOE) = R and EC(x̄, pOE) = R, then x̄i = x̃i = l−1

i (R − pOE
i ) for all i 6= 1,

establishing our claim.

For some x ∈ W (pOE), consider the vector xOE =
(
d−∑

i6=1 xi, x−1

)
. Since x−1 is uniquely defined

and x1 is chosen such that the provider that owns link 1 has no incentive to deviate, it follows that
(pOE , xOE) is an OE.

Appendix C. Proof of Proposition 4.3. We will prove Proposition 4.3 using Theorem 5* of
Dasgupta and Maskin [13]. We start by stating a slightly simplified version of this theorem. Consider
an S player game. Let the strategy space of player s, denoted by Ps, be a closed interval of Rns for

some ns ∈ N, and its payoff function by πs(ps, p−s). We also denote p = (ps, p−s), P =
S∏

s=1
Ps, and

P−s =
S∏

k=1,k 6=s,

Ps. To state Theorem 5* in [13], we need the following three definitions.

Definition A1 Let π(p) =
∑

s∈S πs(ps, p−s). π (p) is upper semicontinuous in p if for all p̄,

lim sup
p→p̄

π(p) ≤ π(p̄).
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Definition A2 The profit function πs(ps, p−s) is weakly lower semicontinuous in ps if for all p̄s ∈ Ps,
there exists λ ∈ [0, 1] such that for all p−s ∈ P−s,

λ lim inf
ps↓p̄s

πs(ps, p−s) + (1− λ) lim inf
ps↑p̄s

πs(ps, p−s) ≥ πs(p̄s, p−s).

Definition A3 For each player s, let Ds ∈ N. For each D with 0 ≤ D ≤ Ds and each k 6= s with
1 ≤ k ≤ S, let fD

sk be a one-to-one, continuous function. Let P̄ (s) be a subset of P , such that

P̄ (s) =
{
(p1, ..., pS) ∈ P | ∃ k 6= s, ∃ D, 0 ≤ D ≤ Ds s.t. pk = fD

sk (ps)
}

.

In other words, P̄ (s) is a lower dimensional subset of P (which is also of Lebesgue measure zero).
Theorem 5* in [13] states:

Theorem A1 (Dasgupta-Maskin) Assume that πs(ps, p−s) is continuous in p except on a subset P ∗∗of
P̄ (s), weakly lower semicontinuous in ps for all s and bounded, and that π(p) is upper semicontinuous in
p. Then the game [(Ps, πs) ; s = 1, 2, · · ·, S] has a mixed strategy equilibrium.

We show that our game satisfies the hypotheses of Theorem A1. We will select a function x∗ (ps, p−s)
from the set of Wardrop equilibria, W (ps, p−s), such that

πs(ps, p−s) = Πs(ps, p−s, x
∗ (ps, p−s)), ∀ s ∈ S,

that will satisfy these hypotheses. First, since Ps = [0, R]Is and
∑

i xi(p) ≤ d for all p, and all x ∈ W (p),
πs(ps, p−s) is clearly bounded.

Since W (ps, p−s) is an upper semicontinuous correspondence, we select x∗ (·) such that

lim inf
ps↑p̄s

∑

j∈Is

x∗j (ps, p−s) =
∑

j∈Is

x∗j (p̄s, p−s), ∀ p̄s ≥ 0, ∀ p−s ≥ 0. (68)

Given p ≥ 0, since pj = pk for all j, k ∈ Ī, where Ī is defined in Eq. (5) in Lemma 2.2, it follows that

lim inf
ps↑p̄s

πs(ps, p−s) = πs(p̄s, p−s), ∀ p̄s ≥ 0, ∀ p−s ≥ 0,

hence ensuring that πs(ps, p−s) = Πs(ps, p−s, x
∗ (ps, p−s)) is weakly lower semicontinuous. We claim that

we have ∑

j

x∗j (p) ≥
∑

j

xj(p), ∀ p ≥ 0, ∀ x ∈ W (p). (69)

Assume the contrary. This implies that there exist some p̄ ≥ 0, s ∈ S, and x ∈ W (p̄) such that
∑

j∈Is

xj(p̄) >
∑

j∈Is

x∗j (p̄). (70)

By Eq. (68), we have that
∑

j∈Is
x∗j (p

n
s , p̄−s) →

∑
j∈Is

x∗j (p̄s, p̄−s) for some sequence {pn
s } ↑ p̄s. Combined

with Eq. (70), this implies that ∑

j∈Is

xj(p̄) >
∑

j∈Is

x∗j (p̂s, p̄−s),

for some p̂s < ps, contradicting the monotonicity of WE by Proposition 2.2.

Next, we show that πs(ps, p−s) is continuous in p except on a set P ∗∗. We define the set

P ∗∗ = {p | W (p) is not a singleton}.
By the upper semicontinuity of W (p), we see that πs(ps, p−s) is continuous at all p /∈ P ∗∗. Moreover, by
Lemma 2.2, it follows that P ∗∗ ⊂ P̄ , where

P̄ = {p | pj = pk, for some j 6= k} ∪ {p | pj = R, for some j},
which is a lower dimensional set. This establishes the desired condition for Theorem A1.

Finally, we show that
π(p) =

∑

s∈S
πs(ps, p−s) =

∑

i∈I
pix

∗
i (p),

is continuous at all p. Given some p ≥ 0, define Ī as in Eq. (5) of Lemma 2.2. If Ī = ∅, then we
automatically have that π is continuous at p. Assume that Ī 6= ∅. Since xOE

i (·) is continuous at p for all
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i /∈ Ī and pj = pk for all j, k ∈ Ī, it is sufficient to show that
∑

i∈Ī x∗i (p) is continuous at p, i.e., for a
sequence {pn} with pn ∈ [0,R]I and pn → p, we show that

lim
n→∞

∑

i∈Ī
x∗i (p

n) =
∑

i∈Ī
x∗i (p).

Define
d̃(pn) =

∑

i/∈Ī
x∗i (p

n).

Since xi(·) is continuous at p for all i /∈ Ī, we have d̃(pn) → d(p) =
∑

i/∈Ī xi(p). Consider two cases:

• ∑
i∈Ī bCi > d − d̃(p). Since x∗(p) is the maximum l1-norm element of W (p) [cf. Eq. (69)]

and li(x∗i ) = 0 for all i ∈ Ī, this implies that
∑

i∈I x∗i (p) = d and for all n sufficiently large∑
i∈I x∗i (p

n) = d, establishing the claim.

• ∑
i∈Ī bCi ≤ d − d̃(p). By the same reasoning as in the previous part, this implies that∑
i∈I x∗i (p) =

∑
i∈Ī bCi

. Moreover, for all ε > 0, there exists some n sufficiently large such
that ∣∣∣

∑

i∈I
x∗i (p

n)−
∑

i∈Ī
bCi

∣∣∣ ≤ ε,

establishing the claim.

The preceding enable us to apply the theorem, completing the proof.

Appendix D. Proof of Lemma 4.3. We first prove the following lemma:

Lemma D.1 Let (pOE , xOE) be an OE such that minj

{
pOE

j + lj(xOE
j )

}
< R. Let Assumptions 2.1 and

4.1 hold. If pOE
j xOE

j > 0 for some j ∈ I, then W (pOE) is a singleton.

Proof. Since pOE
j xOE

j > 0 for some j ∈ I, it follows, by Lemma 4.2, that pOE
i xOE

i > 0 for all i ∈ I.
We first show that for all x ∈ W (pOE), we have xi ≤ xOE

i for all i. If li(xOE
i ) > 0, then by Lemma 2.2,

xi = xOE
i for all x ∈ W (pOE). If li(xOE

i ) = 0, then Is = {i} for some s by the fact that xOE
i > 0 and

Assumption 4.1, which implies that xi ≤ xOE
i by the definition of an OE (cf. Definition 10).

Since minj

{
pOE

j + lj(xOE
j )

}
< R, we have

∑
i∈I xOE

i = d. Moreover, the fact that xi ≤ xOE
i for all

x ∈ W (pOE) implies that minj

{
pOE

j + lj(xj)
}

< R as well, and therefore
∑

i∈I xi = d, showing that
xi = xOE

i for all x ∈ W (pOE), for all i ∈ I. ¤
Proof of Lemma 4.3. We first prove this result for a network with two links. Assume to arrive at a
contradiction that

l+2 (xOE
2 ) > l−2 (xOE

2 ). (71)

Let {εk} be a scalar sequence with εk ↓ 0. Consider the sequence {x1(εk)} where x1(εk) is the load
of link 1 at a WE given price vector (pOE

1 + εk, pOE
2 ). By Proposition 2.1 and Lemma D.1, the WE

correspondence W (p) is upper-semicontinuous and W (pOE) is a singleton. Therefore, it follows that
x1(εk) → xOE

1 . Define
∂+x1(pOE

1 , pOE
2 )

∂p1
= lim

k→∞
x1(εk)− xOE

1

εk
. (72)

Similarly, let x1(−εk) be the load of link 1 at a WE given price vector (pOE
1 − εk, pOE

2 ). Since W (pOE)
is a singleton, we also have x1(−εk) → xOE

1 . Define

∂−x1(pOE
1 , pOE

2 )
∂p1

= lim
k→∞

xOE
1 − x1(−εk)

εk
. (73)

Since minj

{
pOE

j + lj(xOE
j )

}
< R, it can be seen using Lemma 4.1 that

∂+x1(pOE
1 , pOE

2 )
∂p1

≥ −1
l−1 (xOE

1 ) + l+2 (xOE
2 )

,

and
∂−x1(pOE

1 , pOE
2 )

∂p1
≤ −1

l+1 (xOE
1 ) + l−2 (xOE

2 )
.
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Since l+1 (xOE
1 ) = l−1 (xOE

1 ) by Assumption 4.2, this combined with Eq. (71) yields
∂+x1(pOE

1 , pOE
2 )

∂p1
>

∂−x1(pOE
1 , pOE

2 )
∂p1

. (74)

Consider the profit of service provider 1, Π1(pOE
1 , pOE

2 ) = pOE
1 xOE

1 . Define
∂+Π1(pOE

1 , pOE
2 )

∂p1
= lim

k→∞
Π1(pOE

1 + εk, pOE
2 )−Π1(pOE

1 , pOE
2 )

εk
,

∂−Π1(pOE
1 , pOE

2 )
∂p1

= lim
k→∞

Π1(pOE
1 , pOE

2 )−Π1(pOE
1 − εk, pOE

2 )
εk

.

Since pOE
1 is a maximum of Π1(·, pOE

2 ), we have
∂+Π1(pOE

1 , pOE
2 )

∂p1
= xOE

1 + pOE
1

∂+x1(pOE
1 , pOE

2 )
∂p1

≤ 0, (75)

and
∂−Π1(pOE

1 , pOE
2 )

∂p1
= xOE

1 + pOE
1

∂−x1(pOE
1 , pOE

2 )
∂p1

≥ 0, (76)

which, when combined, yields
∂+x1(pOE

1 , pOE
2 )

∂p1
≤ ∂−x1(pOE

1 , pOE
2 )

∂p1
, (77)

which is a contradiction by Eq. (74), thus showing that we have l+2 (xOE
2 ) = l−2 (xOE

2 ).

We next consider a network with multiple links. As in Eqs. (72) and (73), we define for all i ∈ I,
∂+xi(pOE)

∂p1
= lim

k→∞
xi(εk)− xOE

i

εk
,

∂−xi(pOE)
∂p1

= lim
k→∞

xOE
i − xi(−εk)

εk
.

Using the same line of argument as above, we obtain
∂+x1(pOE)

∂p1
≥ −1

l−1 (xOE
1 ) + 1P

i 6=1
1

l
+
i

(xOE
i

)

,

∂−x1(pOE)
∂p1

≤ −1
l+1 (xOE

1 ) + 1P
i 6=1

1
l
−
i

(xOE
i

)

. (78)

Let 1 ∈ Is, and without loss of any generality, assume that all li’s for i ∈ Is are smooth (recall Assumption
4.2). For all i ∈ Is, i 6= 1, we obtain

∂+xi(pOE)
∂p1

≥ 1

l+i (xOE
i )

(
1 + l−1 (xOE

1 )
(∑

j 6=1
1

l+j (xOE
j )

)) ,

∂−xi(pOE)
∂p1

≤ 1

l−i (xOE
i )

(
1 + l+1 (xOE

1 )
(∑

j 6=1
1

l−j (xOE
j )

)) .

To arrive at a contradiction, assume that l+j (xOE
j ) > l−j (xOE

j ) for some j /∈ Is. Then the preceding
two sets of equations imply that

∂+xi(pOE)
∂p1

>
∂−xi(pOE)

∂p1
. (79)

for all i ∈ Is.

Next, Eqs. (75) and (76) for multiple link case are given by
∂+Π1(pOE)

∂p1
= xOE

1 + pOE
1

∂+x1(pOE)
∂p1

+
∑

i∈Is,i6=1

pOE
i

∂+xi(pOE)
∂p1

≤ 0,

∂−Π1(pOE)
∂p1

= xOE
1 + pOE

1

∂−x1(pOE)
∂p1

+
∑

i∈Is,i6=1

pOE
i

∂−xi(pOE)
∂p1

≥ 0, (80)

which are inconsistent with Eq. (79), leading to a contradiction. This proves the claim for the multiple
link case.
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Appendix E. Proof of Proposition 4.4. We first assume that minj

{
pOE

j + lj(xOE
j )

}
< R. Con-

sider service provider s and assume without loss of generality that 1 ∈ Is. Since pOE
j xOE

j > 0 for some
j ∈ Is′ and s′ ∈ S, it follows by Lemma 4.2 that pOE

i xOE
i > 0 for all i ∈ I. Together with Lemma 4.1,

this implies that ((pOE
i )i∈Is , x

OE) is an optimal solution of the problem

maximize((pi)i∈Is ,x)≥0

∑

i∈Is

pixi (81)

subject to l1(x1) + p1 = li(xi) + pi, i ∈ Is − {1},
l1(x1) + p1 = li(xi) + pOE

i , i /∈ Is,

l1(x1) + p1 ≤ R, (82)∑

i∈I
xi ≤ d.

By Lemma 4.3, we have that li is continuously differentiable in a neighborhood of xOE
i for all i (since

the gradient mapping of a convex function is continuous over the set the function is differentiable, see
Rockafellar [42]). Therefore, by examining the Karush-Kuhn-Tucker conditions of this problem, we obtain

pOE
i = xOE

i l′i(x
OE
i )− θ, ∀ i ∈ Is, (83)

where

θ =





0, if l′j(x
OE
j ) = 0 for some j /∈ Is,

−
P

j∈Is
xOE

jP
j /∈Is

1
l′
j
(xOE

j
)

, otherwise, (84)

showing the result in Eq. (16).

We next assume that minj

{
pOE

j + lj(xOE
j )

}
= R. Using the assumption that pOE

j xOE
j > 0 for some

j ∈ I and Lemma 4.1, this implies that

pOE
i = R− li(xOE

i ), ∀ i,

and thus for all s ∈ S, xOE is an optimal solution of

maximize
∑

i∈Is

(R− li(xi))xi

subject to xi ∈ Ti, ∀ i /∈ Is∑

i∈I
xi ≤ d, (85)

where Ti = {xi | pOE
i + li(xi) = R} is either a singleton or a closed interval. Since this is a convex

problem, using the optimality conditions, we obtain

R− li(xOE
i )− xOE

i gli = θs, ∀ i ∈ Is,

where θs ≥ 0 is the Lagrange multiplier associated with constraint (85), and gli ∈ ∂li(xOE
i ). Since

l−i (xOE
i ) ≤ gli , the preceding implies

pOE
i = R− li(xOE

i ) ≥ xOE
i l−i (xOE

i ), ∀ i ∈ I,

proving (17).

To prove (18), consider some i ∈ I with Is = {i} for some s and the sequence of price vectors {pk}
with pk = (pOE

i − εk, pOE
−i ). Let {xk} be a sequence such that xk ∈ W (pk) for all k. By the upper

semicontinuity of W (p), it follows that xk → x̄ with x̄ ∈ W (pOE) and x̄ ≤ xOE (see the proof of Lemma
D.1). Moreover, by Lemma 2.2, we have xk

i ≥ xOE
i for all k, which implies that x̄i ≥ xOE

i , showing that
xk

i → xOE
i . We can now use Eqs. (76) and (80) (by substituting i instead of 1 and using Is = {i}) to

conclude that

pOE
i ≤ xOE

i l+i (xOE
i ) +

xOE
i∑

j 6=1
1

l−j (xOE
j )

.
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