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Angelia Nedić† and Asuman Ozdaglar‡

October 29, 2007

Abstract

We study a distributed computation model for optimizing a sum of convex
objective functions corresponding to multiple agents. For solving this (not nec-
essarily smooth) optimization problem, we consider a subgradient method that
is distributed among the agents. The method involves every agent minimizing
his/her own objective function while exchanging information locally with other
agents in the network over a time-varying topology. We provide convergence re-
sults and convergence rate estimates for the subgradient method. Our convergence
rate results explicitly characterize the tradeoff between a desired accuracy of the
generated approximate optimal solutions and the number of iterations needed to
achieve the accuracy.

1 Introduction

There has been considerable recent interest in the analysis of large-scale networks, such
as the Internet, which consist of multiple agents with different objectives. For such net-
works, it is essential to design resource allocation methods that can operate in a decen-
tralized manner with limited local information and rapidly converge to an approximately
optimal operating point. Most existing approaches use cooperative and noncooperative
distributed optimization frameworks under the assumption that each agent has an ob-
jective function that depends only on the resource allocated to that agent. In many
practical situations however, individual cost functions or performance measures depend
on the entire resource allocation vector.

In this paper, we study a distributed computation model that can be used for general
resource allocation problems. We provide a simple algorithm and study its convergence

∗We would like to thank Rayadurgam Srikant, Devavrat Shah, the associate editor, three anonymous
referees, and various seminar participants for useful comments and discussions.

†Department of Industrial and Enterprise Systems Engineering, University of Illinois, an-
gelia@uiuc.edu

‡Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
asuman@mit.edu



and rate of convergence properties. In particular, we focus on the distributed control of
a network consisting of m agents over a time-varying topology. The global objective is
to cooperatively minimize the cost function

∑m
i=1 fi(x), where the function fi : Rn → R

represents the cost function of agent i, known by this agent only, and x ∈ Rn is a
decision vector. The decision vector can be viewed as either a resource vector where
sub-components correspond to resources allocated to each agent, or a global decision
vector which the agents are trying to compute using local information.

Our algorithm is as follows: each agent generates and maintains estimates of the opti-
mal decision vector based on information concerning his own cost function (in particular,
the subgradient information of fi) and exchanges these estimates directly or indirectly
with the other agents in the network. We allow such communication to be asynchronous,
local, and with time varying connectivity. Under some weak assumptions, we prove that
this type of local communication and computation achieves consensus in the estimates
and converges to an (approximate) global optimal solution. Moreover, we provide rate of
convergence analysis for the estimates maintained by each agent. In particular, we show
that there is a tradeoff between the quality of an approximate optimal solution and the
computation load required to generate such a solution. Our convergence rate estimate
captures this dependence explicitly in terms of the system and algorithm parameters.

Our approach builds on the seminal work of Tsitsiklis [23] (see also Tsitsiklis et al.
[24], Bertsekas and Tsitsiklis [2]), who developed a framework for the analysis of dis-
tributed computation models. This framework focuses on the minimization of a (smooth)
function f(x) by distributing the processing of the components of vector x ∈ Rn among
n agents. In contrast, our focus is on problems in which each agent has a locally known,
different, convex and potentially nonsmooth cost function. To the best of our knowl-
edge, this paper presents the first analysis of this type of distributed resource allocation
problem.

In addition, our work is also related to the literature on reaching consensus on a
particular scalar value or computing exact averages of the initial values of the agents,
which has attracted much recent attention as natural models of cooperative behavior in
networked-systems (see Vicsek et al. [25], Jadbabaie et al. [8], Boyd et al. [4], Olfati-
Saber and Murray [17], Cao et al. [5], and Olshevsky and Tsitsiklis [18, 19]). Our work
is also related to the utility maximization framework for resource allocation in networks
(see Kelly et al. [10], Low and Lapsley [11], Srikant [22], and Chiang et al. [7]). In
contrast to this literature, we allow the local performance measures to depend on the
entire resource allocation vector and provide explicit rate analysis.

The remainder of this paper is organized as follows: In Section 2, we introduce
a model for the information exchange among the agents and a distributed optimiza-
tion model. In Section 3, we establish the basic convergence properties of the transition
matrices governing the evolution of the system in time. In Section 4, we establish conver-
gence and convergence rate results for the proposed distributed optimization algorithm.
Finally, we give our concluding remarks in Section 5.

Basic Notation and Notions:

A vector is viewed as a column vector, unless clearly stated otherwise. We denote
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by xi or [x]i the i-th component of a vector x. When xi ≥ 0 for all components i of a
vector x, we write x ≥ 0. For a matrix A, we write Aj

i or [A]ji to denote the matrix entry
in the i-th row and j-th column. We write [A]i to denote the i-th row of the matrix A,
and [A]j to denote the j-th column of A.

We denote the nonnegative orthant by Rn
+, i.e., Rn

+ = {x ∈ Rn | x ≥ 0}. We write
x′ to denote the transpose of a vector x. The scalar product of two vectors x, y ∈ Rm is
denoted by x′y. We use ‖x‖ to denote the standard Euclidean norm, ‖x‖ =

√
x′x. We

write ‖x‖∞ to denote the max norm, ‖x‖∞ = max1≤i≤m |xi|.
A vector a ∈ Rm is said to be a stochastic vector when its components ai, i = 1, . . . ,m,

are nonnegative and their sum is equal to 1, i.e.,
∑m

i=1 ai = 1. A square m×m matrix
A is said to be a stochastic matrix when each row of A is a stochastic vector. A square
m × m matrix A is said to be a doubly stochastic matrix when both A and A′ are
stochastic matrices.

For a function F : Rn → (−∞,∞], we denote the domain of F by dom(F ), where

dom(F ) = {x ∈ Rn | F (x) < ∞}.
We use the notion of a subgradient of a convex function F (x) at a given vector x̄ ∈
dom(F ). We say that sF (x̄) ∈ Rn is a subgradient of the function F at x̄ ∈ dom(F )
when the following relation holds:

F (x̄) + sF (x̄)′(x− x̄) ≤ F (x) for all x ∈ dom(F ). (1)

The set of all subgradients of F at x̄ is denoted by ∂F (x̄) (see [1]).

2 Multi-agent Model

We are interested in a distributed computation model for a multi-agent system, where
each agent processes his/her local information and shares the information with his/her
neighbors. To describe such a multi-agent system, we need to specify two models: an
information exchange model describing the evolution of the agents’ information in time
and an optimization model specifying overall system objective that agents are cooper-
atively minimizing by individually minimizing their own local objectives. Informally
speaking, the first model specifies the rules of the agents’ interactions such as how often
the agents communicate, how they value their own information and the information re-
ceived from the neighbors. The second model describes the overall goal that the agents
want to achieve through their information exchange. The models are discussed in the
following sections.

2.1 Information Exchange Model

We consider a network with node (or agent) set V = {1, . . . ,m}. At this point, we
are not describing what the agents’ goal is, but rather what the agents’ information
exchange process is.

We use an information evolution model based on the model proposed by Tsitsiklis
[23] (see also Blondel et al. [3]). We impose some rules that govern the information
evolution of the agent system in time. These rules include:
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- A rule on the weights that an agent uses when combining his information with the
information received from his/her neighbors.

- A connectivity rule ensuring that the information of each agent influences the
information of any other agent infinitely often in time.

- A rule on the frequency at which an agent sends his information to the neighbors.

We assume that the agents update and (possibly) send their information to their
neighbors at discrete times t0, t1, t2, . . .. The neighbors of an agent i are the agents j
communicating directly with agent i through a directed link (j, i). We index agents’
information states and any other information at time tk by k. We use xi(k) ∈ Rn to
denote agent i information state at time tk.

We now describe a rule that agents use when updating their information states xi(k).
The information update for agents includes combining their own information state with
those received from their neighbors. In particular, we assume that each agent i has a
vector of weights ai(k) ∈ Rm at any time tk. For each j, the scalar ai

j(k) is the weight
that agent i assigns to the information xj obtained from a neighboring agent j, when
the information is received during the time interval (tk, tk+1) (or slot k). We use the
following assumption on these weights.

Assumption 1 (Weights Rule) We have:

(a) There exists a scalar η with 0 < η < 1 such that for all i ∈ {1, . . . ,m},

(i) ai
i(k) ≥ η for all k ≥ 0.

(ii) ai
j(k) ≥ η for all k ≥ 0 and all agents j communicating directly with agent i

in the interval (tk, tk+1).

(iii) ai
j(k) = 0 for all k ≥ 0 and j otherwise.

(b) The vectors ai(k) are stochastic, i.e.,
∑m

j=1 ai
j(k) = 1 for all i and k.

Assumption 1(a) states that each agent gives significant weights to her own state
xi(k) and the information state xj(k) available from her neighboring agents j at the
update time tk. Naturally, an agent i assigns zero weights to the states xj for those
agents j whose information state is not available at the update time.1 Note that, under
Assumption 1, for a matrix A(k) whose columns are a1(k), . . . , am(k), the transpose
A′(k) is a stochastic matrix for all k ≥ 0.

The following is an example of weight choices satisfying Assumption 1 (cf. Blondel
et al. [3]):

1For Assumption 1(a) to hold, the agents need not be given the lower bound η for their weights
ai

j(k). In particular, as a lower bound for the positive weights ai
j(k), each agent may use her own ηi,

with 0 < ηi < 1. In this case, Assumption 1(a) holds for η = min1≤i≤m ηi. Moreover, we do not assume
that the common bound value η is available to any agent at any time.
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• (Equal Neighbor Weights) Each agent assigns equal weight to his/her information
and the information received from the other agents at slot k, i.e., ai

j(k) = 1
ni(k)+1

for each i, k, and those neighbors j whose state information is available to agent
i at time tk; otherwise ai

j(k) = 0. Here, the number ni(k) is the number of agents
communicating with agent i at the given slot k.

We now discuss the rules we impose on the information exchange. At each update
time tk, the information exchange among the agents may be represented by a directed
graph (V, Ek) with the set Ek of directed edges given by

Ek = {(j, i) | ai
j(k) > 0}.

Note that, by Assumption 1(a), we have (i, i) ∈ Ek for each agent i and all k. Also, we
have (j, i) ∈ Ek if and only if agent i receives the information xj from agent j in the
time interval (tk, tk+1).

Motivated by the model of Tsitsiklis [23] and the “consensus” setting of Blondel et
al. [3]), we impose a minimal assumption on the connectivity of a multi-agent system as
follows: following any time tk, the information of an agent j reaches each and every agent
i directly or indirectly (through a sequence of communications between the other agents).
In other words, the information state of any agent i has to influence the information
state of any other agent infinitely often in time. In formulating this, we use the set E∞
consisting of edges (j, i) such that j is a neighbor of i who communicates with i infinitely
often. The connectivity requirement is formally stated in the following assumption.

Assumption 2 (Connectivity) The graph (V, E∞) is connected, where E∞ is the set of
edges (j, i) representing agent pairs communicating directly infinitely many times, i.e.,

E∞ = {(j, i) | (j, i) ∈ Ek for infinitely many indices k}.

In other words, this assumption states that for any k and any agent pair (j, i), there
is a directed path from agent j to agent i with edges in the set ∪l≥kEl. Thus, Assump-
tion 2 is equivalent to the assumption that the composite directed graph (V,∪l≥kEl) is
connected for all k.

When analyzing the system state behavior, we use an additional assumption that the
intercommunication intervals are bounded for those agents that communicate directly.
In particular, we use the following.

Assumption 3 (Bounded Intercommunication Interval) There exists an integer B ≥ 1
such that for every (j, i) ∈ E∞, agent j sends his/her information to the neighboring
agent i at least once every B consecutive time slots, i.e., at time tk or at time tk+1 or
. . . or (at latest) at time tk+B−1 for any k ≥ 0.

This assumption is equivalent to the requirement that there is B ≥ 1 such that

(j, i) ∈ Ek ∪ Ek+1 ∪ · · · ∪ Ek+B−1 for all (j, i) ∈ E∞ and k ≥ 0.
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2.2 Optimization Model

We consider a scenario where agents cooperatively minimize a common additive cost.
Each agent has information only about one cost component, and minimizes that com-
ponent while exchanging information with other agents. In particular, the agents want
to cooperatively solve the following unconstrained optimization problem:

minimize
∑m

i=1 fi(x)
subject to x ∈ Rn,

(2)

where each fi : Rn → R is a convex function. We denote the optimal value of this
problem by f ∗, which we assume to be finite. We also denote the optimal solution set
by X∗, i.e., X∗ = {x ∈ Rn |

∑m
i=1 fi(x) = f ∗}.

In this setting, the information state of an agent i is an estimate of an optimal
solution of the problem (2). We denote by xi(k) ∈ Rn the estimate maintained by agent
i at the time tk. The agents update their estimates as follows: When generating a new
estimate, agent i combines his/her current estimate xi with the estimates xj received
from some of the other agents j. Here we assume that there is no communication delay
in delivering a message from agent j to agent i 2.

In particular, agent i updates his/her estimates according to the following relation:

xi(k + 1) =
m∑

j=1

ai
j(k)xj(k)− αi(k)di(k), (3)

where the vector ai(k) = (ai
1(k), . . . , ai

m(k))′ is a vector of weights and the scalar αi(k) >
0 is a stepsize used by agent i. The vector di(k) is a subgradient of agent i objective
function fi(x) at x = xi(k). We note that the optimization model of Eqs. (2)–(3)
reduces to a “consensus” or “agreement” problem when all the objective functions fi are
identically equal to zero; see Jadbabaie et al. [8] and Blondel et al. [3].

We are interested in conditions guaranteeing convergence of xi(k) to a common limit
vector in Rn. We are also interested in characterizing these common limit points in terms
of the properties of the functions fi. In order to have a more compact representation of
the evolution of the estimates xi(k) of Eq. (3) in time, we rewrite this model in a form
similar to that of Tsitsiklis [23]. This form is also more appropriate for our convergence
analysis. In particular, we introduce matrices A(s) whose i-th column is the vector ai(s).
Using these matrices we can relate estimate xi(k + 1) to the estimates x1(s), . . . , xm(s)
for any s ≤ k. In particular, it is straightforward to verify that for the iterates generated
by Eq. (3), we have for any i, and any s and k with k ≥ s,

xi(k + 1) =
m∑

j=1

[A(s)A(s + 1) · · ·A(k − 1)ai(k)]jx
j(s)

−
m∑

j=1

[A(s + 1) · · ·A(k − 1)ai(k)]jα
j(s)dj(s)

2A more general model that accounts for the possibility of such delays is the subject of our current
work, see [16].
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−
m∑

j=1

[A(s + 2) · · ·A(k − 1)ai(k)]jα
j(s + 1)dj(s + 1)

− · · · −
m∑

j=1

[A(k − 1)ai(k)]jα
j(k − 2)dj(k − 2)

−
m∑

j=1

[ai(k)]jα
j(k − 1)dj(k − 1)− αi(k)di(k). (4)

Let us introduce the matrices

Φ(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k) for all s and k with k ≥ s,

where Φ(k, k) = A(k) for all k. Note that the i-th column of Φ(k, s) is given by

[Φ(k, s)]i = A(s)A(s + 1) · · ·A(k − 1)ai(k) for all i, s and k with k ≥ s,

while the entry in i-th column and j-th row of Φ(k, s) is given by

[Φ(k, s)]ij = [A(s)A(s + 1) · · ·A(k − 1)ai(k)]j for all i, j, s and k with k ≥ s.

We can now rewrite relation (4) compactly in terms of the matrices Φ(k, s), as follows:
for any i ∈ {1, . . . ,m}, and s and k with k ≥ s ≥ 0,

xi(k + 1) =
m∑

j=1

[Φ(k, s)]ijx
j(s)−

k∑
r=s+1

(
m∑

j=1

[Φ(k, r)]ijα
j(r − 1)dj(r − 1)

)
− αi(k)di(k).

(5)
We start our analysis by considering the transition matrices Φ(k, s).

3 Convergence of the Transition Matrices Φ(k, s)

In this section, we study the convergence behavior of the matrices Φ(k, s) as k goes
to infinity. We establish convergence rate estimates for these matrices. Clearly, the
convergence rate of these matrices dictates the convergence rate of the agents’ estimates
to an optimal solution of the overall optimization problem (2). Recall that these matrices
are given by

Φ(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k) for all s and k with k ≥ s, (6)

where
Φ(k, k) = A(k) for all k. (7)

3.1 Basic Properties

Here, we establish some properties of the transition matrices Φ(k, s) under the assump-
tions discussed in Section 2.
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Lemma 1 Let Weights Rule (a) hold [cf. Assumption 1(a)]. We then have:

(a) [Φ(k, s)]jj ≥ ηk−s+1 for all j, k, and s with k ≥ s.

(b) [Φ(k, s)]ij ≥ ηk−s+1 for all k and s with k ≥ s, and for all (j, i) ∈ Es ∪ · · · ∪ Ek,
where Et is the set of edges defined by

Et = {(j, i) | ai
j(t) > 0} for all t.

(c) Let (j, v) ∈ Es ∪ · · · ∪ Er for some r ≥ s and (v, i) ∈ Er+1 ∪ · · · ∪ Ek for k > r.
Then,

[Φ(k, s)]ij ≥ ηk−s+1.

(d) Let Weights Rule (b) also hold [cf. Assumption 1(b)]. Then, the matrices Φ′(k, s)
are stochastic for all k and s with k ≥ s.

Proof. We let s be arbitrary, and prove the relations by induction on k.
(a) Note that, in view of Assumption 1(a), the matrices Φ(k, s) have nonnegative
entries for all k and s with k ≥ s. Furthermore, by Assumption 1(a)(i), we have
[Φ(s, s)]jj ≥ η. Thus, the relation [Φ(k, s)]jj ≥ ηk−s+1 holds for k = s.

Now, assume that for some k with k > s we have [Φ(k, s)]jj ≥ ηk−s+1, and consider

[Φ(k + 1, s)]jj. By the definition of the matrix Φ(k, s) [cf. Eq. (6)], we have

[Φ(k + 1, s)]jj =
m∑

h=1

[Φ(k, s)]hj a
j
h(k + 1) ≥ [Φ(k, s)]jja

j
j(k + 1),

where the inequality in the preceding relation follows from the nonnegativity of the
entries of Φ(k, s). By using the inductive hypothesis and the relation aj

j(k + 1) ≥ η [cf.
Assumption 1(a)(i)], we obtain

[Φ(k + 1, s)]jj ≥ ηk−s+2.

Hence, the relation [Φ(k, s)]jj ≥ ηk−s+1 holds for all k ≥ s.
(b) Let (j, i) ∈ Es. Then, by the definition of Es and Assumption 1(a), we have that
ai

j(s) ≥ η. Since Φ(s, s) = A(s) [cf. Eq. (7)], it follows that the relation [Φ(k, s)]ij ≥
ηk−s+1 holds for k = s and any (j, i) ∈ Es. Assume now that for some k > s and all
(j, i) ∈ Es ∪ · · · ∪ Ek, we have [Φ(k, s)]ij ≥ ηk−s+1. Consider k + 1, and let (j, i) ∈
Es ∪ · · · ∪ Ek ∪ Ek+1. There are two possibilities (j, i) ∈ Es ∪ · · · ∪ Ek or (j, i) ∈ Ek+1.

Suppose that (j, i) ∈ Es ∪ · · · ∪ Ek. Then, by the induction hypothesis, we have

[Φ(k, s)]ij ≥ ηk−s+1.

Therefore

[Φ(k + 1, s)]ij =
m∑

h=1

[Φ(k, s)]hj a
i
h(k + 1) ≥ [Φ(k, s)]ija

i
i(k + 1),
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where the inequality in the preceding relation follows from the nonnegativity of the
entries of Φ(k, s). By combining the preceding two relations, and using the fact a(r)i

i ≥ η
for all i and r [cf. Assumption 1(a)(i)], we obtain

[Φ(k + 1, s)]ij ≥ ηk−s+2.

Suppose now that (j, i) ∈ Ek+1. Then, by the definition of Ek+1, we have ai
j(k+1) ≥

η. Furthermore, by part (a), we have

[Φ(k, s)]jj ≥ ηk−s+1.

Therefore

[Φ(k + 1, s)]ij =
m∑

h=1

[Φ(k, s)]hj a
i
h(k + 1) ≥ [Φ(k, s)]jja

i
j(k + 1) ≥ ηk−s+2.

Hence, [Φ(k, s)]ij ≥ ηk−s+1 holds for all k ≥ s and all (j, i) ∈ Es ∪ · · · ∪ Ek.
(c) Let (j, v) ∈ Es ∪ · · · ∪ Er for some r ≥ s and (v, i) ∈ Er+1 ∪ · · · ∪ Ek for k > r.
Then, by the nonnegativity of the entries of Φ(r, s) and Φ(k, r + 1), we have

[Φ(k, s)]ij =
m∑

h=1

[Φ(r, s)]hj [Φ(k, r + 1)]ih ≥ [Φ(r, s)]vj [Φ(k, r + 1)]iv.

By part (b), we further have

[Φ(r, s)]vj ≥ ηr−s+1 [Φ(k, r + 1)]iv ≥ ηk−r,

implying that
[Φ(k, s)]ij ≥ ηr−s+1ηk−r = ηk−s+1.

(d) Recall that, for each k, the columns of the matrix A(k) are the weight vectors
a1(k), . . . , am(k). Hence, by Assumption 1, the matrix A′(k) is stochastic for all k. From
the definition of Φ(k, s) in Eqs. (6)–(7), we have Φ′(k, s) = A′(k) · · ·A′(s+ 1)A′(s), thus
implying that Φ′(k, s) is stochastic for all k and s with k ≥ s.

Lemma 2 Let Weights Rule (a), Connectivity, and Bounded Intercommunication In-
terval assumptions hold [cf. Assumptions 1(a), 2, and 3]. We then have

[Φ(s + (m− 1)B − 1, s)]ij ≥ η(m−1)B for all s, i, and j,

where η is the lower bound of Assumption 1(a) and B is the intercommunication interval
bound of Assumption 3.

Proof. Let s, i, and j be arbitrary. If j = i, then by Lemma 1(a), we have

[Φ(s + (m− 1)B − 1, s)]ii ≥ η(m−1)B.
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Assume now that j 6= i. By Connectivity [cf. Assumption 2], there is a path j = i0 →
i1 → . . . → ir−1 → ir = i from j to i, passing through distinct nodes iκ, κ = 0, . . . , r
and with edges (iκ−1, iκ) in the set

E∞ = {(h, h̄) | (h, h̄) ∈ Ek for infinitely many indices k}.

Because each edge (iκ−1, iκ) of the path belongs to E∞, by using Assumption 3 [with
k = s + (κ− 1)B for edge (iκ−1, iκ)], we obtain

(iκ−1, iκ) ∈ Es+(κ−1)B ∪ · · · ∪ Es+κB−1 for κ = 1, ..., r.

By using Lemma 1 (b), we have

[Φ(s + κB − 1, s + (κ− 1)B)]iκiκ−1
≥ ηB for κ = 1, ..., r.

By Lemma 1(c), it follows that

[Φ(s + rB − 1, s)]ij ≥ ηrB.

Since there are m agents, and the nodes in the path j = i0 → i1 → . . . → ir−1 → ir = i
are distinct, it follows that r ≤ m− 1. Hence, we have

[Φ(s + (m− 1)B − 1, s)]ij =
m∑

h=1

[Φ(s + rB − 1, s)]hj [Φ(s + (m− 1)B − 1, s + rB)]ih

≥ [Φ(s + rB − 1, s)]ij[Φ(s + (m− 1)B − 1, s + rB)]ii
≥ ηrBη(m−1)B−rB

= η(m−1)B,

where the last inequality follows from [Φ(k, s]ii ≥ ηk−s+1 for all i, k, and s with k ≥ s
[cf. Lemma 1(a)].

Our ultimate goal is to study the limit behavior of Φ(k, s) as k → ∞ for a fixed
s ≥ 0. For this analysis, we introduce the matrices Dk(s) as follows: for a fixed s ≥ 0,

Dk(s) = Φ′ (s + kB0 − 1, s + (k − 1)B0) for k = 1, 2, . . . , (8)

where B0 = (m−1)B. The next lemma shows that, for each s ≥ 0, the product of these
matrices converges as k increases to infinity.

Lemma 3 Let Weights Rule, Connectivity, and Bounded Intercommunication Interval
assumptions hold [cf. Assumptions 1, 2, and 3]. Let the matrices Dk(s) for k ≥ 1 and a
fixed s ≥ 0 be given by Eq. (8). We then have:

(a) The limit D̄(s) = limk→∞Dk(s) · · ·D1(s) exists.

(b) The limit D̄(s) is a stochastic matrix with identical rows (a function of s) i.e.,

D̄(s) = eφ′(s)

where e ∈ Rm is a vector of ones and φ(s) ∈ Rm is a stochastic vector.

10



(c) The convergence of Dk(s) · · ·D1(s) to D̄(s) is geometric: for every x ∈ Rm,∥∥(Dk(s) · · ·D1(s)) x− D̄(s)x
∥∥
∞ ≤ 2

(
1 + η−B0

) (
1− ηB0

)k ‖x‖∞ for all k ≥ 1.

In particular, for every j, the entries [Dk(s) · · ·D1(s)]
j
i , i = 1, . . . ,m, converge to

the same limit φj(s) as k →∞ with a geometric rate: for every j,∣∣[Dk(s) · · ·D1(s)]
j
i − φj(s)

∣∣ ≤ 2
(
1 + η−B0

) (
1− ηB0

)k
for all k ≥ 1 and i,

where η is the lower bound of Assumption 1(a), B0 = (m− 1)B, m is the number
of agents, and B is the intercommunication interval bound of Assumption 3.

Proof. In this proof, we suppress the explicit dependence of the matrices Di on s to
simplify our notation.

(a) We prove that the limit limk→∞ (Dk · · ·D1) exists by showing that the sequence
{(Dk · · ·D1)x} converges for every x ∈ Rm. To show this, let x0 ∈ Rm be arbitrary, and
consider the vector sequence {xk} defined by

xk = Dk · · ·D1x0 for k ≥ 1.

We write each vector xk in the following form:

xk = zk + cke with zk ≥ 0 for all k ≥ 0, (9)

where e ∈ Rm is the vector with all entries equal to 1. The recursion is initialized with

z0 = x− min
1≤i≤m

[x0]i and c0 = min
1≤i≤m

[x0]i. (10)

Having the decomposition for xk, we consider the vector xk+1 = Dk+1xk. In view of
relation (9) and the stochasticity of Dk+1, we have

xk+1 = Dk+1zk + cke.

We define
zk+1 = Dk+1zk − ([Dk+1]j∗zk) e, (11)

ck+1 = [Dk+1]j∗zk + ck. (12)

where j∗ is the index of the row vector [Dk+1]j achieving the minimum of inner products
[Dk+1]jzk over all j ∈ {1, . . . ,m}. Clearly, we have xk+1 = zk+1 + ck+1e and zk+1 ≥ 0.

By the definition of zk+1 in Eq. (11) it follows that for the components [zk+1]j we
have

[zk+1]j = [Dk+1]jzk − [Dk+1]j∗zk for all j ∈ {1, . . . ,m}, (13)

where [Dk+1]j is the j-th row vector of the matrix Dk+1. By Lemma 2 and the definition
of the matrices Dk [cf. Eq. (8)], we have that all entries of each matrix Dk are bounded
away from zero, i.e., for all i, j ∈ {1, . . . ,m},

[Dk+1]
i
j ≥ ηB0 for all k ≥ 0.

11



Then, from relation (13), we have for all i ∈ {1, . . . ,m},

[zk+1]j = ([Dk+1]j − [Dk+1]j∗)
′ zk ≤ (1− ηB0) ‖zk‖∞.

Because zk+1 ≥ 0, it follows

‖zk+1‖∞ ≤
(
1− ηB0

)
‖zk‖∞ for all k ≥ 0,

implying that

‖zk‖∞ ≤
(
1− ηB0

)k ‖z0‖∞ for all k ≥ 0. (14)

Hence zk → 0 with a geometric rate.
Consider now the sequence ck of Eq. (12). Since the vectors [Dk+1]j and zk have

nonnegative entries, it follows that

ck ≤ ck+1 = ck + [Dk+1]j∗zk.

Furthermore, by using the stochasticity of the matrix Dk+1, we obtain for all k,

ck+1 ≤ ck +
m∑

i=1

[Dk+1]
i
j∗‖zk‖∞ = ck + ‖zk‖∞.

From the preceding two relations and Eq. (14), it follows that

0 ≤ ck+1 − ck ≤ ‖zk‖∞ ≤
(
1− ηB0

)k ‖z0‖∞ for all k.

Therefore, we have for any k ≥ 1 and r ≥ 1,

0 ≤ ck+r−ck ≤ ck+r−ck+r−1+· · ·+ck+1−ck ≤ (qk+r−1+· · ·+qk)‖z0‖∞ =
1− qr

1− q
qk‖z0‖∞,

where q = 1− ηB0 . Hence, {ck} is a Cauchy sequence and therefore it converges to some
c̄ ∈ R. By letting r →∞ in the preceding relation, we obtain

0 ≤ c̄− ck ≤
qk

1− q
‖z0‖∞. (15)

From the decomposition of xk [cf. Eq. (9)], and the relations zk → 0 and ck → c̄, it follows
that (Dk · · ·D1)x0 → c̄e for any x0 ∈ Rm, with c̄ being a function of x0. Therefore, the
limit of Dk · · ·D1 as k →∞ exists. We denote this limit by D̄, for which we have

D̄x0 = c̄(x0)e for all x0 ∈ Rm.

(b) Since each Dk is stochastic, the limit matrix D̄ is also stochastic. Furthermore,
because (Dk · · ·D1)x → c̄(x)e for any x ∈ Rm, the limit matrix D̄ has rank one. Thus,
the rows of D̄ are collinear. Because the sum of all entries of D̄ in each of its rows is
equal to 1, it follows that the rows of D̄ are identical. Therefore, for some stochastic
vector φ(s) ∈ Rm [a function of the fixed s], we have

D̄ = eφ(s)′.

12



(c) Let xk = (Dk · · ·D1)x0 for an arbitrary x0 ∈ Rm. By omitting the explicit depen-
dence on x0 in c̄(x0), and by using the decomposition of xk [cf. Eq. (9)], we have

(Dk · · ·D1)x0 − D̄x0 = zk + (ck − c̄)e for all k.

Using the estimates in Eqs. (14) and (15), we obtain for all k ≥ 1,∥∥(Dk · · ·D1)x0 − D̄x0

∥∥
∞ ≤ ‖zk‖∞ + |ck − c̄| ≤

(
1 +

1

1− q

)
qk‖z0‖∞.

Since z0 = x0 −min1≤i≤m[x0]i [cf. Eq. (10)], implying that ‖z0‖∞ ≤ 2‖x0‖∞. Therefore,

∥∥(Dk · · ·D1)x0 − D̄x0

∥∥
∞ ≤ 2

(
1 +

1

1− q

)
qk‖x0‖∞ for all k,

with q = 1− ηB0 , or equivalently∥∥(Dk · · ·D1)x0 − D̄x0

∥∥
∞ ≤ 2

(
1 + η−B0

) (
1− ηB0

)k ‖x0‖∞ for all k. (16)

Thus, the first relation of part (c) of the lemma is established.
To show the second relation of part (c) of the lemma, let j ∈ {1, . . . ,m} be arbitrary.

Let ej ∈ Rm be a vector with j-th entry equal to 1 and the other entries equal to 0. By
setting x0 = ej in Eq. (16), and by using D̄ = eφ′(s) and ‖ej‖∞ = 1, we obtain∥∥[Dk · · ·D1]

j − φj(s)e
∥∥
∞ ≤ 2

(
1 + η−B0

) (
1− ηB0

)k
for all k.

Thus, it follows that∣∣[Dk · · ·D1]
j
i − φj(s)

∣∣ ≤ 2
(
1 + η−B0

) (
1− ηB0

)k
for all k ≥ 1 and i.

The explicit form of the bound in part (c) of this Lemma 3 is new; the other parts
have been established by Tsitsiklis [23].

In the following lemma, we present convergence results for the matrices Φ(k, s) as k
goes to infinity. Lemma 3 plays a crucial role in establishing these results. In particular,
we show that the matrices Φ(k, s) have the same limit as the matrices [D1(s) · · ·Dk(s)]

′,
when k increases to infinity.

Lemma 4 Let Weights Rule, Connectivity, and Bounded Intercommunication Interval
assumptions hold [cf. Assumptions 1, 2, and 3]. We then have:

(a) The limit Φ̄(s) = limk→∞Φ(k, s) exists for each s.

(b) The limit matrix Φ̄(s) has identical columns and the columns are stochastic i.e.,

Φ̄(s) = φ(s)e′,

where φ(s) ∈ Rm is a stochastic vector for each s.
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(c) For every i, the entries [Φ(k, s)]ji , j = 1, ...,m, converge to the same limit φi(s) as
k →∞ with a geometric rate, i.e., for every i ∈ {1, . . . ,m} and all s ≥ 0,∣∣[Φ(k, s)]ji − φi(s)

∣∣ ≤ 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 for all k ≥ s and j ∈ {1, . . . ,m},

where η is the lower bound of Assumption 1(a), B0 = (m− 1)B, m is the number
of agents, and B is the intercommunication interval bound of Assumption 3.

Proof. For a given s and k ≥ s + B0, there exists κ ≥ 1 such that s + κB0 ≤ k <
s + (κ + 1)B0. Then, by the definition of Φ(k, s) [cf. Eqs. (6)-(7)], we have

Φ(k, s) = Φ (s + κB0 − 1, s) Φ (k, s + κB0)
= Φ(s + B0 − 1, s) · · ·Φ (s + κB0 − 1, s + (κ− 1)B0) Φ (k, s + κB0)
= (Φ′ (s + κB0 − 1, s + (κ− 1)B0) · · ·Φ′(s + B0 − 1, s))

′
Φ (k, s + κB0) .

By using the matrices

Dk = Φ′ (s + kB0 − 1, s + (k − 1)B0) for k ≥ 1 (17)

[the dependence of Dk on s is suppressed], we can write

Φ(k, s) = (Dκ · · ·D1)
′Φ (k, s + κB0) .

Therefore, for any i, j and k ≥ s + B0, we have

[Φ(k, s)]ji =
m∑

h=1

[Dκ · · ·D1]
i
h [Φ (k, s + κB0)]

j
h ≤ max

1≤h≤m
[Dκ · · ·D1]

i
h

m∑
h=1

[Φ (k, s + κB0)]
j
h .

Since the columns of the matrix Φ (k, s + κB0) are stochastic vectors, it follows that for
any i, j and k ≥ s + B0,

[Φ(k, s)]ji ≤ max
1≤h≤m

[Dκ · · ·D1]
i
h. (18)

Similarly, it can be seen that for any i, j and k ≥ s + B0,

[Φ(k, s)]ji ≥ min
1≤h≤m

[Dκ · · ·D1]
i
h. (19)

In view of Lemma 3, for a given s, there exists a stochastic vector φ(s) such that

lim
k→∞

Dk · · ·D1 = eφ′(s).

Furthermore, by Lemma 3(c) we have for every h̃ ∈ {1, . . . ,m},∣∣∣[Dκ · · ·D1]
h̃
h − [φ(s)]h̃

∣∣∣ ≤ 2
(
1 + η−B0

) (
1− ηB0

)κ
,

for κ ≥ 1 and h ∈ {1, . . . ,m}. From the preceding relation, and inequalities (18) and
(19), it follows that for k ≥ s + B0 and any i, j ∈ {1, . . . ,m},
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∣∣[Φ(k, s)]ji − [φ(s)]i
∣∣

≤ max

{∣∣∣∣ max
1≤h≤m

[Dκ · · ·D1]
i
h − [φ(s)]i

∣∣∣∣ , ∣∣∣∣ min
1≤h≤m

[Dκ · · ·D1]
i
h − [φ(s)]i

∣∣∣∣}
≤ 2

(
1 + η−B0

) (
1− ηB0

)κ
.

Since κ ≥ 1 and s + κB0 ≤ k < s + (κ + 1)B0, we have(
1− ηB0

)κ
=

(
1− ηB0

)κ+1 1

1− ηB0

=
(
1− ηB0

) s+(κ+1)B0−s
B0

1

1− ηB0

≤
(
1− ηB0

) k−s
B0

1

1− ηB0
,

where the last inequality follows from the relations 0 < 1−ηB0 < 1 and k < s+(κ+1)B0.
By combining the preceding two relations, we obtain for k ≥ s + B0 and any i, j ∈
{1, . . . ,m}, ∣∣[Φ(k, s)]ji − [φ(s)]i

∣∣ ≤ 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 . (20)

Therefore, we have

lim
k→∞

Φ(k, s) = φ(s)e′ = Φ̄(s) for every s,

thus showing part (a) of the lemma. Furthermore, we have that all the columns of Φ̄(s)
coincide with the vector φ(s), which is a stochastic vector by Lemma 3(b). This shows
part (b) of the lemma.

Note that relation (20) holds for k ≥ s+B0 and any i, j ∈ {1, . . . ,m}. To prove part
(c) of the lemma, we need to show that the estimate of Eq. (20) holds for arbitrary s
and for k with s + B0 > k ≥ s, and any i, j ∈ {1, . . . ,m}. Thus, let s be arbitrary and
let s + B0 > k ≥ s. Because Φ′(k, s) is a stochastic matrix, we have for all i and j,

0 ≤ [Φ(k, s)]ji ≤ 1.

Therefore, for k with s + B0 > k ≥ s, and any i, j ∈ {1, . . . ,m},∣∣[Φ(k, s)]ji − [φ(s)]i
∣∣ ≤ 2

< 2
(
1 + η−B0

)
= 2

1 + η−B0

1− ηB0

(
1− ηB0

) s+B0−s
B0

< 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 ,

where the last inequality follows from the relations 0 < 1 − ηB0 < 1 and k < s + B0.
From the preceding relation and Eq. (20) it follows that for every s and i ∈ {1, . . . ,m},∣∣[Φ(k, s)]ji − [φ(s)]i

∣∣ ≤ 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 for all k ≥ s and j ∈ {1, . . . ,m},
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thus showing part (c) of the lemma.
The preceding results are shown by following the line of analysis of Tsitsiklis [23] (see

Lemma 5.2.1 in [23]; see also Bertsekas and Tsitsiklis [2]). The rate estimate given in
part (c) is new and provides the explicit dependence of the convergence of the transition
matrices on system parameters and problem data. This estimate will be essential in
providing convergence rate results for the subgradient method of Section 3 [cf. Eq. (5)].

3.2 Limit Vectors φ(s)

The agents’ objective is to cooperatively minimize the additive cost function
∑m

i=1 fi(x),
while each agent individually performs his own state updates according to the subgra-
dient method of Eq. (5). In order to reach a “consensus” on the optimal solution of
the problem, it is essential that the agents process their individual objective functions
with the same frequency in the long run. This will be guaranteed if the limit vectors
φ(s) converge to a uniform distribution, i.e., lims→∞ φ(s) = 1

m
e for all s. One way of

ensuring this is to have φ(s) = 1
m

e for all s, which holds when the weight matrices A(k)
are doubly stochastic. We formally impose this condition in the following.

Assumption 4 (Doubly Stochastic Weights) Let the weight vectors a1(k), . . . , am(k),
k = 0, 1, . . . , satisfy Weights Rule [cf. Assumption 1]. Assume further that the matrices
A(k) = [a1(k), . . . , am(k)] are doubly stochastic for all k.

Under this and some additional assumptions, we show that all the limit vectors φ(s)
are the same and correspond to the uniform distribution 1

m
e. This is an immediate

consequence of Lemma 4, as seen in the following.

Proposition 1 (Uniform Limit Distribution) Let Connectivity, Bounded Intercommu-
nication Interval, and Doubly Stochastic Weights assumptions hold [cf. Assumptions 2,
3, and 4]. We then have:

(a) The limit matrices Φ(s) = limk→∞Φ(k, s) are doubly stochastic and correspond to
a uniform steady state distribution for all s, i.e.,

Φ(s) =
1

m
ee′ for all s.

(b) The entries [Φ(k, s)]ji converge to 1
m

as k → ∞ with a geometric rate uniformly
with respect to i and j, i.e., for all i, j ∈ {1, . . . ,m},∣∣∣∣[Φ(k, s)]ji −

1

m

∣∣∣∣ ≤ 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 for all s and k with k ≥ s,

where η is the lower bound of Assumption 1(a), B0 = (m− 1)B, m is the number
of agents, and B is the intercommunication interval bound of Assumption 3.
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Proof. (a) Since the matrix A(k) is doubly stochastic for all k, the matrix Φ(k, s) [cf.
Eqs. (6)-(7)] is also doubly stochastic for all s and k with k ≥ s. In view of Lemma
4, the limit matrix Φ̄(s) = φ(s)e′ is doubly stochastic for every s. Therefore, we have
φ(s)e′e = e for all s, implying that

φ(s) =
1

m
e for all s.

(b) The geometric rate estimate follows directly from Lemma 4(c).

The requirement that A(k) is doubly stochastic for all k inherently dictates that
the agents share the information about their weights and coordinate the choices of the
weights when updating their estimates. In this scenario, we view the weights of the
agents as being of types: planned weights and actual weights they use in their updates.
Specifically, let the weight pi

j(k) > 0 be the weight that agent i plans to use at the
update time tk+1 provided that an estimate xj(k) is received from agent j in the interval
(tk, tk+1). If agent j communicates with agent i during the time interval (tk, tk+1), then
these agents communicate to each other their estimates xj(k) and xi(k) as well as their
planned weights pj

i (k) and pi
j(k). In the next update time tk+1, the actual weight ai

j(k)
that agent i assigns to the estimate xj(k) is selected as the minimum of the agent j
planned weight pj

i (k) and the agent i planned weight pi
j(k). We summarize this in the

following assumption.

Assumption 5 (Simultaneous Information Exchange) The agents exchange informa-
tion simultaneously: if agent j communicates to agent i at some time, then agent i also
communicates to agent j at that time, i.e.,

if (j, i) ∈ Ek for some k, then (i, j) ∈ Ek.

Furthermore, when agents i and j communicate, they exchange their estimates xi(k)
and xj(k), and their planned weights pi

j(k) and pj
i (k).

We now show that when agents choose the smallest of their planned weights and the
planned weights are stochastic, then the actual weights form a doubly stochastic matrix.

Assumption 6 (Symmetric Weights) Let the agent planned weights pi
j(k), i, j =

1 . . . , m, be such that for some scalar η, with 0 < η < 1, we have pi
j(k) ≥ η for all

i, j and k, and
∑m

j=1 pi
j(k) = 1 for all i and k. Furthermore, let the actual weights ai

j(k),
i, j = 1, . . . ,m that the agents use in their updates be given by:

(i) ai
j(k) = min{pi

j(k), pj
i (k)} when agents i and j communicate during the time in-

terval (tk, tk+1), and ai
j(k) = 0 otherwise.

(ii) ai
i(k) = 1−

∑
j 6=i a

i
j(k).

The preceding discussion, combined with Lemma 1, yields the following result.
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Proposition 2 Let Connectivity, Bounded Intercommunication Interval, Simultaneous
Information Exchange, and Symmetric Weights assumptions hold [cf. Assumptions 2, 3,
5, and 6]. We then have:

(a) The limit matrices Φ(s) = limk→∞Φ(k, s) are doubly stochastic and correspond to
a uniform steady state distribution for all s, i.e.,

Φ(s) =
1

m
ee′ for all s.

(b) The entries [Φ(k, s)]ij converge to 1
m

as k → ∞ with a geometric rate uniformly
with respect to i and j, i.e., for all i, j ∈ {1, . . . ,m},∣∣∣∣[Φ(k, s)]ji −

1

m

∣∣∣∣ ≤ 2
1 + η−B0

1− ηB0

(
1− ηB0

) k−s
B0 for all s and k with k ≥ s,

where η is the lower bound of Symmetric Weights Assumption 6, B0 = (m− 1)B,
m is the number of agents, and B is the intercommunication interval bound of
Assumption 3.

Proof. In view of Uniform Limit Distribution [cf. Proposition 1], it suffices to show that
Simultaneous Information Exchange and Symmetric Weights assumptions [cf. Assump-
tions 5 and 6], imply that Assumption 4 holds. In particular, we need to show that the
actual weights ai

j(k), i, j = 1, . . . ,m satisfy Weights Rule [cf. Assumption 1], and that
the vectors ai(k), i = 1, . . . ,m form a doubly stochastic matrix.

First, note that by Symmetric Weights assumption, the weights ai
j(k), i, j = 1, . . . ,m

satisfy Weights Rule. Thus, the agent weight vectors ai(k), i = 1, . . . ,m are stochastic,
and hence, the weight matrix A′(k) with rows ai(k), i = 1, . . . ,m is stochastic for all
k. Second, note that by Simultaneous Information Exchange and Symmetric Weights
assumptions, it follows that the weight matrix A(k) is symmetric for all k. Since A′(k)
is stochastic for any k, we have that A(k) is doubly stochastic for all k.

4 Convergence of the Subgradient Method

Here, we study the convergence behavior of the subgradient method introduced in Sec-
tion 2. In particular, we have shown that the iterations of the method satisfy the
following relation: for any i ∈ {1, . . . ,m}, and s and k with k ≥ s,

xi(k + 1) =
m∑

j=1

[Φ(k, s)]ijx
j(s)−

k∑
r=s+1

(
m∑

j=1

[Φ(k, r)]ijα
j(r − 1)dj(r − 1)

)
− αi(k)di(k),

[cf. Eq. (5)]. We analyze this model under the symmetric weights assumption (cf. As-
sumption 6). Also, we consider the case of a constant stepsize that is common to all
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agents, i.e., αj(r) = α for all r and all agents j, so that the model reduces to the
following: for any i ∈ {1, . . . ,m}, and s and k with k ≥ s,

xi(k + 1) =
m∑

j=1

[Φ(k, s)]ijx
j(s)− α

k∑
r=s+1

(
m∑

j=1

[Φ(k, r)]ijdj(r − 1)

)
− αdi(k). (21)

To analyze this model, we consider a related “stopped” model whereby the agents stop
computing the subgradients dj(k) at some time, but they keep exchanging their infor-
mation and updating their estimates using only the weights for the rest of the time. To
describe the “stopped” model, we use relation (21) with s = 0, from which we obtain

xi(k + 1) =
m∑

j=1

[Φ(k, 0)]ijx
j(0)− α

k∑
s=1

(
m∑

j=1

[Φ(k, s)]ijdj(s− 1)

)
− αdi(k). (22)

Suppose that agents cease computing dj(k) after some time tk̄, so that

dj(k) = 0 for all j and all k with k ≥ k̄.

Let {x̄i(k)}, i = 1, . . . ,m be the sequences of the estimates generated by the agents in
this case. Then, from relation (22) we have for all i,

x̄i(k) = xi(k) for all k ≤ k̄,

and for k > k̄,

x̄i(k) =
m∑

j=1

[Φ(k − 1, 0)]ijx
j(0) − α

k̄∑
s=1

(
m∑

j=1

[Φ(k − 1, s)]ijdj(s− 1)

)
− αdi(k̄)

=
m∑

j=1

[Φ(k − 1, 0)]ijx
j(0) − α

k̄∑
s=1

(
m∑

j=1

[Φ(k − 1, s)]ijdj(s− 1)

)
.

By letting k → ∞ and by using Proposition 2(b), we see that the limit vector
limk→∞ x̄i(k) exists. Furthermore, the limit vector does not depend on i, but does
depend on k̄. We denote this limit by y(k̄), i.e.,

lim
k→∞

x̄i(k) = y(k̄),

for which, by Proposition 2(a), we have

y(k̄) =
1

m

m∑
j=1

xj(0)− α
k̄∑

s=1

(
m∑

j=1

1

m
dj(s− 1)

)
.

Note that this relation holds for any k̄, so may re-index these relations by using k, and
thus obtain

y(k + 1) = y(k)− α

m

m∑
j=1

dj(k) for all k. (23)
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Recall that the vector dj(k) is a subgradient of the agent j objective function fj(x) at
x = xj(k). Thus, the preceding iteration can be viewed as an iteration of an approximate
subgradient method. Specifically, for each j, the method uses a subgradient of fj at
the estimate xj(k) approximating the vector y(k) [instead of a subgradient of fj(x) at
x = y(k)].

We start with a lemma providing some basic relations used in the analysis of subgra-
dient methods. Similar relations have been used in various ways to analyze subgradient
approaches (for example, see Shor [21], Polyak [20], Nedić and Bertsekas [12], [13], and
Nedić, Bertsekas, and Borkar [14]). In the following lemma and thereafter, we use the
notation f(x) =

∑m
i=1 fi(x).

Lemma 5 (Basic Iterate Relation) Let the sequence {y(k)} be generated by the iter-
ation (23), and the sequences {xj(k)} for j ∈ {1, . . . ,m} be generated by the iteration
(22). Let {gj(k)} be a sequence of subgradients such that gj(k) ∈ ∂fj(y(k)) for all
j ∈ {1, . . . ,m} and k ≥ 0. We then have:

(a) For any x ∈ Rn and all k ≥ 0,

‖y(k + 1)− x‖2 ≤ ‖y(k)− x‖2 +
2α

m

m∑
j=1

(‖dj(k)‖+ ‖gj(k)‖) ‖y(k)− xj(k)‖

− 2α

m
[f(y(k))− f(x)] +

α2

m2

m∑
j=1

‖dj(k)‖2.

(b) When the optimal solution set X∗ is nonempty, there holds for all k ≥ 0,

dist2(y(k + 1), X∗)

≤ dist2(y(k), X∗) +
2α

m

m∑
j=1

(‖dj(k)‖+ ‖gj(k)‖) ‖y(k)− xj(k)‖

− 2α

m
[f(y(k))− f ∗] +

α2

m2

m∑
j=1

‖dj(k)‖2.

Proof. From relation (23) we obtain for any x ∈ Rn and all k ≥ 0,

‖y(k + 1)− x‖2 =

∥∥∥∥∥y(k)− α

m

m∑
j=1

dj(k)− x

∥∥∥∥∥
2

,

implying that

‖y(k + 1)− x‖2 ≤ ‖y(k)− x‖2 − 2α

m

m∑
j=1

dj(k)′(y(k)− x) +
α2

m2

m∑
j=1

‖dj(k)‖2. (24)
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We now consider the term dj(k)′(y(k)− x) for any j, for which we have

dj(k)′(y(k)− x) = dj(k)′(y(k)− xj(k)) + dj(k)′(xj(k)− x)

≥ −‖dj(k)‖ ‖y(k)− xj(k)‖+ dj(k)′(xj(k)− x).

Since dj(k) is a subgradient of fj at xj(k) [cf. Eq. (1)], we further have for any j and
any x ∈ Rn,

dj(k)′(xj(k)− x) ≥ fj(x
j(k))− fj(x).

Furthermore, by using a subgradient gj(k) of fj at y(k) [cf. Eq. (1)], we also have for
any j and x ∈ Rn,

fj(x
j(k))− fj(x) = fj(x

j(k))− fj(y(k)) + fj(y(k))− fj(x)
≥ gj(k)′(xj(k)− y(k)) + fj(y(k))− fj(x)
≥ −‖gj(k)‖ ‖xj(k)− y(k)‖ + fj(y(k))− fj(x).

By combining the preceding three relations it follows that for any j and x ∈ Rn,

dj(k)′(y(k)− x) ≥ − (‖dj(k)‖+ ‖gj(k)‖) ‖y(k)− xj(k)‖+ fj(y(k))− fj(x).

Summing this relation over all j, we obtain

m∑
j=1

dj(k)′(y(k)− x) ≥ −
m∑

j=1

(‖dj(k)‖+ ‖gj(k)‖) ‖y(k)− xj(k)‖+ f(y(k))− f(x).

By combining the preceding inequality with Eq. (24) the relation in part (a) follows, i.e.,
for all x ∈ Rn and all k ≥ 0,

‖y(k + 1)− x‖2 ≤ ‖y(k)− x‖2 +
2α

m

m∑
j=1

(‖dj(k)‖+ ‖gj(k)‖) ‖y(k)− xj(k)‖

− 2α

m
[f(y(k))− f(x)] +

α2

m2

m∑
j=1

‖dj(k)‖2.

The relation in part (b) follows by letting x ∈ X∗ and by taking the infimum over x ∈ X∗

in both sides of the preceding relation.

We adopt the following assumptions for our convergence analysis:

Assumption 7 (Bounded Subgradients) The subgradient sequences {dj(k)} and {gj(k)}
are bounded for each j, i.e., there exists a scalar L > 0 such that

max{‖dj(k)‖, ‖gj(k)‖} ≤ L for all j = 1, . . . ,m, and all k ≥ 0.

This assumption is satisfied, for example, when each fi is polyhedral (i.e., fi is the
pointwise maximum of a finite number of affine functions).
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Assumption 8 (Nonempty Optimal Solution Set) The optimal solution set X∗ is
nonempty.

Our main convergence results are given in the following proposition. In particular,
we provide a uniform bound on the norm of the difference between y(k) and xi(k) that
holds for all i ∈ {1, . . . ,m} and all k ≥ 0. We also consider the averaged-vectors ŷ(k)
and x̂i(k) defined for all k ≥ 1 as follows:

ŷ(k) =
1

k

k−1∑
h=0

y(h), x̂i(k) =
1

k

k−1∑
h=0

xi(h) for all i ∈ {1, . . . ,m}. (25)

We provide upper bounds on the objective function value of the averaged-vectors. Note
that averaging allows us to provide our estimates per iteration3.

Proposition 3 Let Connectivity, Bounded Intercommunication Interval, Simultaneous
Information Exchange, and Symmetric Weights assumptions hold [cf. Assumptions 2, 3,
5, and 6]. Let the Bounded Subgradients and Nonempty Optimal Set assumptions hold
[cf. Assumptions 7 and 8]. Let xj(0) denote the initial vector of agent j and assume that

max
1≤j≤m

‖xj(0)‖ ≤ αL.

Let the sequence {y(k)} be generated by the iteration (23), and let the sequences {xi(k)}
be generated by the iteration (22). We then have:

(a) For every i ∈ {1, . . . ,m}, a uniform upper bound on ‖y(k)− xi(k)‖ is given by:

‖y(k)− xi(k)‖ ≤ 2αLC1 for all k ≥ 0,

C1 = 1 +
m

1− (1− ηB0)
1

B0

1 + η−B0

1− ηB0
.

(b) Let ŷ(k) and x̂i(k) be the averaged-vectors of Eq. (25). An upper bound on the
objective cost f(ŷ(k)) is given by:

f(ŷ(k)) ≤ f ∗ +
m dist2(y(0), X∗)

2αk
+

αL2C

2
for all k ≥ 1.

When there are subgradients ĝij(k) of fj at x̂i(k) that are bounded uniformly by

some constant L̂1, an upper bound on the objective value f(x̂i(k)) for each i is
given by:

f(x̂i(k)) ≤ f ∗ +
m dist2(y(0), X∗)

2αk
+ αL

(
LC

2
+ 2mL̂1C1

)
for all k ≥ 1,

3See also our recent work [15] which uses averaging to generate approximate primal solutions with
convergence rate estimates for dual subgradient methods.
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where L is the subgradient norm bound of Assumption 7, y(0) = 1
m

∑m
j=1 xj(0), and C =

1+8mC1. The constant B0 is given by B0 = (m−1)B and B is the intercommunication
interval bound of Assumption 3.

Proof. (a) From Eq. (23) it follows that y(k) = y(0) − α
m

∑k−1
s=0

∑m
j=1 dj(s) for all

k ≥ 1. Using this relation, the relation y(0) = 1
m

∑m
j=1 xj(0) and Eq. (22), we obtain for

all k ≥ 0 and i ∈ {1, . . . ,m},

‖y(k)− xi(k)‖ ≤
∥∥∥ m∑

j=1

xj(0)
( 1

m
− [Φ(k − 1, 0)]ij

)
− α

k−1∑
s=1

m∑
j=1

( 1

m
− [Φ(k − 1, s)]ij

)
dj(s− 1)

− α
( 1

m

m∑
j=1

dj(k − 1)− di(k − 1)
)∥∥∥.

Therefore, for all k ≥ 0 and i ∈ {1, . . . ,m},

‖y(k)− xi(k)‖ ≤ max
1≤j≤m

‖xj(0)‖
m∑

j=1

∣∣∣∣ 1

m
− [Φ(k − 1, 0)]ij

∣∣∣∣
+ α

k−1∑
s=1

m∑
j=1

‖dj(s− 1)‖
∣∣∣∣ 1

m
− [Φ(k − 1, s)]ij

∣∣∣∣
+

α

m

m∑
j=1

‖dj(k − 1)− di(k − 1)‖.

Using the estimates for
∣∣[Φ(k − 1, 0)]ij − 1

m

∣∣ of Proposition 2(b), the assumption that
max1≤j≤m ‖xj(0)‖ ≤ αL, and the subgradient boundedness [cf. Assumption 7], from the
preceding relation we obtain for all k ≥ 0 and i ∈ {1, . . . ,m},

‖y(k)− xi(k)‖ ≤ 2αLm
1 + η−B0

1− ηB0

k−1∑
s=0

(1− ηB0)
k−1−s

B0 + 2αL

≤ 2αL

(
1 +

m

1− (1− ηB0)
1

B0

1 + η−B0

1− ηB0

)
.

(b) By using Lemma 5(b) and the subgradient boundedness [cf. Assumption 7], we have
for all k ≥ 0,

dist2(y(k+1), X∗) ≤ dist2(y(k), X∗)+
4αL

m

m∑
j=1

‖y(k)−xj(k)‖−2α

m
[f(y(k))− f ∗]+

α2L2

m
.

Using the estimate of part (a), we obtain for all k ≥ 0,

dist2(y(k + 1), X∗) ≤ dist2(y(k), X∗) +
4αL

m
2mαLC1 −

2α

m
[f(y(k))− f ∗] +

α2L2

m

= dist2(y(k), X∗) +
α2L2

m
C − 2α

m
[f(y(k))− f ∗],
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where C = 1 + 8mC1. Therefore, we have

f(y(k))− f ∗ ≤ dist2(y(k), X∗)− dist2(y(k + 1), X∗)

2α/m
+

αL2C

2
for all k ≥ 0.

By summing preceding relations over 0, . . . , k − 1 and dividing the sum by k, we have
for any k ≥ 1,

1

k

k−1∑
k=0

f(y(h))− f ∗ ≤ dist2(y(0), X∗)− dist2(y(h), X∗)

2α/m
+

αL2C

2

≤ dist2(y(0), X∗)

2αk/m
+

αL2C

2
(26)

By the convexity of the function f , we have

1

k

k−1∑
k=0

f(y(h)) ≥ f(ŷ(k)) where ŷ(k) =
1

k

k−1∑
k=0

y(h).

Therefore, by using the relation in (26), we obtain

f(ŷ(k)) ≤ f ∗ +
m dist2(y(0), X∗)

2αk
+

αL2C

2
for all k ≥ 1. (27)

We now show the estimate for f(x̂i(k)). By the subgradient definition, we have

f(x̂i(k)) ≤ f(ŷ(k)) +
m∑

j=1

ĝij(k)′(x̂i(k)− ŷ(k)) for all i ∈ {1, . . . ,m} and k ≥ 1,

where ĝij(k) is a subgradient of fj at x̂i(k). Since ‖ĝij(k)‖ ≤ L̂1 for all i, j ∈ {1, . . . ,m},
and k ≥ 1, it follows that

f(x̂i(k)) ≤ f(ŷ(k)) + mL̂1‖x̂i(k)− ŷ(k)‖.

Using the estimate in part (a), the relation ‖x̂i(k)− ŷ(k)‖ ≤
∑k−1

l=0 ‖xi(l)− y(l)‖/k, and
Eq. (27), we obtain for all i ∈ {1, . . . ,m} and k ≥ 1,

f(x̂i(k)) ≤ f ∗ +
m dist2(y(0), X∗)

2αk
+

αL2C

2
+ 2αmL̂1LC1.

Part (a) of the preceding proposition shows that the error between y(k) and xi(k)
for all i is bounded from above by a constant that is proportional to the stepsize α, i.e.,
by picking a smaller stepsize in the subgradient method, one can guarantee a smaller
error between the vectors y(k) and xi(k) for all i ∈ {1, . . . ,m} and all k ≥ 0. In part
(b) of the proposition, we provide upper bounds on the objective function values of the
averaged-vectors ŷ(k) and x̂i(k). The upper bounds on f(x̂i(k)) provide estimates for
the error from the optimal value f ∗ at each iteration k. More importantly, they show
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that the error consists of two additive terms: The first term is inversely proportional
to the stepsize α and goes to zero at a rate 1/k. The second term is a constant that
is proportional to the stepsize α, the subgradient bound L, and the constants C and
C1, which are related to the convergence of the transition matrices Φ(k, s). Hence, our
bounds provide explicit per-iteration error expressions for the estimates maintained at
each agent i.

The fact that there is a constant error term in the estimates which is proportional to
the stepsize value α is not surprising and is due to the fact that a constant stepsize rule
is used in the subgradient method of Eq. (21). It is possible to use different stepsize rules
(e.g. diminishing stepsize rule or adaptive stepsize rules; see [1], [13], and [12]) to drive
the error to zero in the limit. We use constant stepsize rule in view of its simplicity and
because our goal is to generate approximate optimal solutions in relatively few number
of iterations. Our analysis explicitly characterizes the tradeoff between the quality of an
approximate solution and the computation load required to generate such a solution in
terms of the stepsize value α.

5 Conclusions

In this paper, we presented an analysis of a distributed computation model for opti-
mizing the sum of objective functions of multiple agents, which are convex but not
necessarily smooth. In this model, every agent generates and maintains estimates of the
optimal solution of the global optimization problem. These estimates are communicated
(directly or indirectly) to other agents asynchronously and over a time-varying connec-
tivity structure. Each agent updates his estimates based on local information concerning
the estimates received from his immediate neighbors and his own cost function using a
subgradient method.

We provide convergence results for this method focusing on the objective function
values of the estimates maintained at each agent. To achieve this, we first analyze
the convergence behavior of the transition matrices governing the information exchange
among the agents. We provide explicit rate results for the convergence of the transition
matrices. We use these rate results in the analysis of the subgradient method. For the
constant stepsize rule, we provide bounds on the error between the objective function
values of the estimates at each agent and the optimal value of the global optimization
problem. Our bounds are per-iteration and explicitly characterize the dependence of the
error on the algorithm parameters and the underlying connectivity structure.

The results in this paper add to the growing literature on the cooperative control of
multi-agent systems. The framework provided in this paper motivates further analysis
of a number of interesting questions:

• Our model assumes that there are no constraints in the global optimization prob-
lem. One interesting area of research is to incorporate constraints into the dis-
tributed computation model. The presence of constraints may destroy the linearity
in the information evolution and will necessitate a different line of analysis.

• We assume that the set of agents in the system is fixed in our model. Studying
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the effects of dynamics in the presence of agents in the system is an interesting
research area, which we leave for future work.

• The update rule studied in this paper assumes that there is no delay in receiving
the estimates of the other agents. This is a restrictive assumption in many appli-
cations in view of communication and other types of delays. The convergence and
convergence rate analysis of this paper can be extended to this more general case
and is the focus of our current research [16].

• The update rule assumes that agents can send and process real-valued estimates,
thus excluding the possibility of communication bandwidth constraints on the
information exchange. This is a question that is attracting much recent attention
in the context of consensus algorithms (see Kashyap et al. [9] and Carli et al.
[6]). Understanding the implications of communication bandwidth constraints on
the performance of the asynchronous distributed optimization algorithms both in
terms of convergence rate and error is an important area for future study.
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