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Abstract— While social networks do affect diffusion of inno-
vations, the exact nature of these effects are far from clear,
and, in many cases, there exist conflicting hypotheses among
researchers. In this paper, we focus on the linear threshold
model where each individual requires exposure to (potentially)
multiple sources of adoption in her neighborhood before adopt-
ing the innovation herself. In contrast with the conclusions in
the literature, our bounds suggest that innovations might spread
further across networks with a smaller degree of clustering. We
provide both analytical evidence and simulations for our claims.
Finally, we propose an extension for the linear threshold model
to better capture the notion of path dependence, i.e., a few
minor shocks along the way could alter the course of diffusion
significantly.

I. INTRODUCTION

Existing evidence suggests that diffusion of innovations is a
social process and an individual’s adoption behavior is highly
correlated with the behavior of her contacts [1]. However, the
complex structure of the social networks and heterogeneity
of individuals make it far from obvious how these local
correlations affect the final outcome of the diffusion process.
These considerations have been modeled in the literature
using the linear threshold model, originally proposed by
Granovetter [2]. This model is defined over a graph rep-
resenting a (social) network of potential adopters. There
exists a subset of individuals (seed set) who have already
adopted the innovation. Each member is assumed to adopt the
innovation if the fraction of her neighbors that have adopted
is above a certain (potentially heterogeneous) threshold.
In this paper, we use the linear threshold model to analyze
the effects of network structure, threshold values and the
seed set on the dynamics of the diffusion. Our analysis
is novel in three fronts: First, we study the dynamics of
the linear threshold model under deterministic networks,
threshold values and the seed set rather than randomizing
over all these quantities, and characterize the final adopter
set. Our characterization is based on cohesion of social
groups, where cohesion is measured comparing the relative
frequency of ties among group members to ties with non-
members. We generalize the definition of cohesive set by
Morris [3], and show that the final adopter set is related to
the largest cohesive subset of the complement of the seed
set.
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Second, by only randomizing over the seed set (keeping
network structure and threshold values fixed), we capture the
effect of clusters and long links on the expected number of
final adopters. Our upper bound (on the expected number of
final adopters) suggests that networks with highly clustered
sub-communities and short range links only might be less
effective than networks with a smaller degree of clustering
and with long links. We observe such behavior even when
threshold values are large, i.e., when each individual requires
multiple adoption in her neighborhood before adopting the
innovation. Our upper bound is also linear in the cardinality
of the seed set k, for small k.
Finally, we propose an extension for the linear threshold
model to capture the idea of path dependence, i.e., a few
minor shocks along the way could alter the course of diffu-
sion significantly [4]. In the proposed model, an individual
actively considers adoption if the fraction of her neighbors
that have adopted is above a certain threshold. The active
consideration is a stochastic process and it can lead to either
adoption or rejection of the innovation. We argue that this
simple extension can capture the notion of path dependence.
Our paper is related to the growing literature on diffusion
over social networks (e.g., [3], [5]–[8]). Our study is most
relevant to the literature which measure the effect of clus-
tering on innovation diffusion [5]–[7], [9]. In particular,
in [7], [9], the authors discuss that the effect of clustering
on complex contagions (the case where individuals have
high threshold values) differs significantly from the one on
epidemics (the case where individuals have low threshold
values). They argue that complex contagions might diffuse
further on networks with highly clustered sub-communities
and short range links only, while epidemics diffuse further on
networks with long links. Despite the positive reinforcement
effects of clusters on complex contagions, our results show
that highly clustered sub-communities are also difficult to
penetrate unless there exists a seed node inside the com-
munities themselves. Therefore, especially when the number
of seed nodes is small, complex contagions might diffuse
further on networks with a smaller degree of clustering and
with long links, contrary to the intuition provided by above
studies. Our result holds on both complex contagions and
epidemics.
Our study is also related to the literature on the linear
threshold model (e.g. [10]–[12]). Unlike these studies, we



focus on deterministic networks, threshold values and seed
sets. In return, our results are not limited to the degree
distribution of the social graph, and we can infer the effects
the seed set location and the network clustering on the set
of final adopters.
Due to the space limitations, proofs will be omitted, and can
be found in [13].

II. LINEAR THRESHOLD MODEL

We consider a set of agents V = {1, . . . , N} situated in
a social network represented by a directed graph G(V, E),
where E is the set of edges representing the connectivity
among these individuals.1 We do not allow self-loops. An
edge (i, j) ∈ E is directed from i to j. We define the neighbor
set of agent i ∈ V as Ni(G) = {j|(j, i) ∈ E}. In other words,
the set Ni(G) consists of individuals who can potentially
influence agent i for a given graph G.
We assume that at iteration k = 0, a subset of individuals
Φ(0) ⊆ V is selected as the seed for the innovation. The set
Φ(0) could represent a group of innovators who have already
been exposed to innovation as well as the set of promoters
who have certain social, economic and/or political agenda.
We assume that the seed set adopts the innovation at iteration
k = 0. At the next iteration, an individual i ∈ V \Φ(0) will
adopt the innovation if at least φi ∈ (0, 1] fraction of her
neighbors are in the seed set, i.e.,

|Φ(0) ∩Ni(G)|
|Ni(G)|

≥ φi ⇒ i ∈ Φ(1). (1)

In other words, the set Φ(1) consists of individuals who
have been exposed to the innovation, are persuaded by their
neighbors that adoption is worth considering, and then adopt
the innovation. For a given k ≥ 0, the above discussion can
be generalized as follows: a node i ∈ V \

⋃k−1
l=0 Φ(l) will

adopt the innovation at k if

|{
⋃k−1

l=0 Φ(l)} ∩ Ni(G)|
|Ni(G)|

≥ φi ⇒ i ∈ Φ(k). (2)

III. CHARACTERIZATION OF THE SET OF FINAL
ADOPTERS

In this section, we will characterize the final adopter set
in terms of the underlying network, the seed set and the
threshold values.
Before introducing our results, we first introduce a measure
of cohesion of a social group.
Definition 1: A subset M⊆ V is called a cohesive set if;

|M ∩Ni(G)|
|Ni(G)|

> 1− φi for all i ∈M. (3)

Definition 1 states that a group of agents form a cohesive
set if for each member of the set the fraction of neighbors
residing in the set is strictly greater than the individual
specific threshold. This definition is due to Morris [3], and it
measures the cohesion of a group by comparing the relative

1Throughout the paper, we will use the terms agent, individual, and
node interchangeably. Similarly, the terms network and graph will be used
interchangeably.

Fig. 1. A sample network.

frequency of ties among group members to ties with non-
members.2 For the sake of completeness, we will assume
that the empty set ∅ is cohesive.
Fig. 1 introduces a sample network with six individuals. We
assume that threshold values are equal to 0.5− ε for the first
two agents, and are equal to 0.5 + ε for the last four agents,
where 0 < ε << 1. The sample network has multiple co-
hesive subsets, e.g., {3, 4, 5, 6}, {4, 5, 6}, {1, 2, 3, 4, 5}. For
instance, for M = {4, 5, 6}, the ratio in Eq. (3) is equal
to {2/3, 1, 1}, respectively. Since each of these values are
strictly greater than 1 − φi = 0.5 − ε, i ∈ M, the set M is
a cohesive set.
Definition 2: For a given graph and threshold values, a
nonempty set Φ? is a fixed point of the deterministic thresh-
old model if

Φ(0) = Φ? ⇒ Φ(k) = ∅, for all k > 0. (4)
Definition 2 states that a nonempty set is a fixed point
if an innovation initiated at that particular set can not
diffuse through the rest of the society. The following lemma
introduces a characterization of the fixed points of the
deterministic threshold model in terms of cohesive sets.
Lemma 1: For a given graph G and threshold values
{φi}i∈V ; an adopter set Φ? is a fixed point if and only if
(Φ?)c = V \ Φ? is a cohesive set.
Lemma 1 characterizes the set of possible fixed points for a
given graph G and threshold values {φi}i∈V . The proof is
based on the following discussion by Morris [3, Proposition
1]: Members of a cohesive set M can not satisfy Eq. (2)
unless there exists an individual inside the set M who
has previously adopted the innovation. In other words, the
members of a cohesive set can not adopt the innovation
unless there exists at least one adopter inside the set itself.
Therefore, if one initializes an innovation from a set Φ?

whose complement is a cohesive set, the innovation will not
be adopted by the members of the complement set.
The society given in Fig. 1 has several fixed points, e.g.,
{1, 2}, {1, 2, 3}, {5}, {1, 2, 3, 4, 5, 6}. We note that the uni-
versal set {1, 2, 3, 4, 5, 6} is also a fixed point.
In the following, we introduce the main result of the section
which characterizes the set of final adopters for a given
graph, seed set and threshold values.
Lemma 2: For a given graph G, threshold values {φi}i∈V
and seed set Φ(0), denote {Φ?

s}Ks=1, K ≥ 1 as the set of
fixed points for which Φ(0) ⊆ Φ?

s holds. Then,

Φ? =
K⋂

s=1

Φ?
s, (5)

2As noted by Morris, relative frequency of ties is not the only way to
capture cohesion of a social group [3].



is the set of final adopters.
Each Φ?

s is a fixed point and a non-empty subset of V .
Therefore, {Φ?

s}Ks=1, K ≥ 1, is a set of subsets whose
intersection identify the set of final adopters, i.e., Φ?. We
note that K > 0, since V is a fixed point and Φ(0) ⊆ V
for any given seed set Φ(0). Moreover, the intersection in
Eq. 5 is nonempty since each Φ?

s is a superset of the seed
set Φ(0).
According to Lemma 2, the network structure, thresh-
old values and the seed set uniquely identifies the final
adopter set. For instance, if we choose the seed set as
Φ(0) = {1} in Fig. 1, there exists four fixed points
which are also supersets of Φ(0) , i.e., Φ(0) = {1} ⊂
{1, 2}, {1, 2, 3}, {1, 2, 5}, {1, 2, 6}. Therefore, the spread of
the innovation stops once it reaches the intersection of these
sets, i.e., {1, 2}.
An immediate corollary of Lemmas 1 and 2 characterizes
the final adopter set in terms of cohesive sets.
Corollary 1: For a given graph G, threshold values {φi}i∈V
and seed set Φ(0), denote {Ms}Ks=1, K ≥ 1 as the set of
cohesive subsets of V for which Φ(0)∩Ms = ∅ holds. Then,

Φ? =

(
K⋃

s=1

Ms

)c

, (6)

is the set of final adopters.
Corollary 1 states that the final adopter set is the complement
of the unions of cohesive subsets of V \ Φ(0). The proof
follows from the fact that Φ? =

⋂K
s=1 Φ?

s =
(⋃K

s=1(Φ?
s)c
)c

,
and, there exists a bijective mapping f : {1, . . . ,K} →
{1, . . . ,K} such that (Φ?

s)c ∼Mf(s).
We note that, due to the definition of cohesiveness, finite
unions of cohesive sets are also cohesive. Therefore, there
exists an s? ∈ {1, . . . ,K}, such that Ms ⊆ Ms? for all
s, and

⋃K
s=1Ms = Ms? . By Eq. (6), Φ? = (Ms?)c. In

other words, the final adopter set is equal to the complement
of the largest (in cardinality) cohesive subset of V \ Φ(0).
For instance, in Fig. 1, for Φ(0) = {1}, the largest cohesive
subset of V \ {1} is {3, 4, 5, 6}, and the final adopter set is
{1, 2}.

IV. AN UPPER BOUND ON THE NUMBER OF FINAL
ADOPTERS

For a given graph G and threshold values {φi}i∈V , we can
partition the graph into disjoint cohesive sets, i.e., for all
i, j ∈ {1, . . . , r}:
• Mi ∩Mj = ∅ for i 6= j,
•
⋃r

i=1Mi = V ,
• Mi cohesive for all i.

We denote the set {M1,M2, . . . ,Mr} as a cohesive par-
tition. We note that cohesive partitioning is not necessarily
unique for a given graph and threshold values. Therefore, we
denote the set P as the set of all possible cohesive partitions.
Each element of the set P , i.e., Pi, is a cohesive partition.
For instance, in Fig. 1, there are two cohesive partitions
P1 = {{1, 2, 3}, {4, 5, 6}} and P2 = {{1, 2, 3, 4, 5, 6}}.
Thus, P = {{{1, 2, 3}, {4, 5, 6}}, {1, 2, 3, 4, 5, 6}}.

In the following, we will focus on the expected number of
final adopters as our metric. The expectation is taken over
all possible seed sets of a given cardinality k ≥ 1, where
each k element subset of V has equal probability.
Lemma 3: For a given graph G and threshold values
{φi}i∈V , denote {Ms}rs=1, r ≥ 1 as a cohesive partition
of V , and assume that the sets {Ms}rs=1 are in descending
order with respect to their cardinalities. Then, for a given
seed set size k ≤ r, the expected number of final adopters
E[Φ?] is upper bounded by:

E[Φ?] ≤
k∑

s=1

|Ms|. (7)

The upper bound suggests that, as the cardinalities of the
largest sets in a cohesive partition decrease, the expected
number of final adopters might also decrease. Since k is
fixed, and as the cardinalities of the k largest sets of a
partition decrease, the cardinalities of the r−k smallest sets
increase. Therefore, the number of non-adopters increases.
We note that the upper bound holds for any given cohesive
partitions. For a given k, we can tighten the bound by
minimizing it over all cohesive partitions which have at least
k elements. Slightly abusing our notation, it is equivalent to:

E[Φ?] ≤ min
T ∈P(k)

k∑
s=1

|Ms(T )|, (8)

where P(k) is the set of all cohesive partitions which have at
least k elements, and Ms(T ) is the corresponding element
of the partition T .
The following corollary introduces the relationship between
the expected number of final adopters and the number of sets
r in a partition.
Corollary 2: For a given graph G and threshold values
{φi}i∈V , denote {Ms}rs=1, r ≥ 1 as a partitionof V , and
assume that the sets {Ms}rs=1 are in descending order with
respect to their cardinalities. If there exists an ε ≥ 0, such
that:

|M1| − ε ≤ |Ms| ≤ |M1|+ ε, for all s, (9)

then, for a given seed set of size k ≤ r, the expected number
of final adopters E[Φ?] is upper bounded by:

E[Φ?] ≤ kN
r

+ (k + 1)ε. (10)
Corollary 2 states that if there exists a partition where the sets
are uniform (in size), then the upper bound is inversely pro-
portional to the number of sets r in the partition. Therefore,
a configuration (graph and threshold values) with a partition
with small numbers of sets might help the innovation to
diffuse further than a configuration with a large number of
sets in the partition (in expectation). Existence of a single
partition with uniform set sizes is a sufficient condition for
our bound to hold.
While the results are interesting, they are not easy to interpret
since cohesiveness is a function of both the network structure
and the threshold values. In the following, we will focus on
each of them separately.



(a) Clustering coefficient 0.42. (b) Clustering coefficient 0.

Fig. 2. Two sample networks with similar degree distributions.

Threshold Values: To capture the effects of threshold values
on our bound, we will fix the network structure of the
society. As the threshold values increase, the right side of
Eq. (3) decreases. Thus, nodes can form cohesive subsets
with smaller number of neighbors. This will potentially
decrease the cardinalities of sets in cohesive partitions and
increase r. In return, the bound on the expected number of
adopters will decrease. The following proposition states our
argument in a formal way.
Proposition 1: Given a graph G and two sets of threshold
values {φ̃i}i∈V , {φi}i∈V such that:

φ̃i ≥ φi for all i ∈ V,

then,

min
T̃ ∈P̃(k)

k∑
s=1

|M̃s(T̃ )| ≤ min
T ∈P(k)

k∑
s=1

|Ms(T )|,

and, under the assumptions given in Corollary 2,

k
N

r̃
+ (k + 1)ε ≤ kN

r
+ (k + 1)ε

Network Structure: To capture the effects of network struc-
ture, we will use the notion of clustering (transitivity), i.e.,
to what extent nodes tend to create tightly knit groups. There
are two main reasons for utilizing clustering: First, clustering
have been extensively used in the diffusion literature to
capture the network structure, therefore it allows us to
compare our results with the existing literature. Second, there
is a direct relation between cohesiveness and clustering.
We will first illustrate the relation between cohesiveness
and clustering with an example. In Fig. 2, we introduce
two networks with the same number of nodes and links.
Moreover, for a given node i, the number of neighbors is
fixed on both graphs. The network in Fig. 2(a) has three
densely connected clusters, while the network in Fig. 2(b)
has a small degree of clustering. Clustering coefficients3 of
networks are 0.42 and 0, respectively [14]. We note that
clustering coefficient is a function of network structure only
and it is independent of threshold values.
We assume that each node has threshold value of 0.5 on
both graphs. For the highly clustered network, the cohesive
partition which minimizes the upper bound for k = 1, 2, 3
is: {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. We note that these three
partitions are also distinct clusters (regardless of thresh-

3Clustering coefficient of a node is defined as the ratio of existing
triangles in the neighborhood to the number of all possible triangles in
the neighborhood. Clustering coefficient of a network is defined as the ratio
of existing triangles in the network to the number of all possible triangles
in the network.

old values). For the second network, the cohesive parti-
tion which minimizes the upper bound for k = 1, 2 is:
{{1, 2, 7, 8, 9}, {3, 4, 5, 6}}. In this case, the graph is less
structured, clusters are not distinct, and the number of sets
in the cohesive partition is smaller. Our example suggests
that highly clustered networks tend to have larger numbers
of sets in cohesive partitions, and cohesive partitions tend to
have smaller cardinalities. When combined with Lemma 3
and Corollary 2, it suggests that highly clustered networks
might to have smaller expected number of final adapters.
The following proposition introduces the relationship be-
tween clustering coefficient and the bound on the expected
number of adopters.
Proposition 2: For a given pair of graphs G(V, E), G̃(Ṽ, Ẽ)
such that |V| = |Ṽ|, such that there exists a bijective function
f : V → Ṽ:

• |Ni| = |Ñf(i)| for all i ∈ V ,
• φi = φ̃f(i) for all i ∈ V
• {φj}j∈Ni

∼ {φ̃j′}j′∈Ñf(i)
, for all i ∈ V ,

then, if the clustering coefficient of i (in all of the subsets
of V containing i) is less than or equal to the clustering
coefficient of f(i) (in all of the subsets of Ṽ containing f(i)),
then:

min
T̃ ∈P̃(k)

k∑
s=1

|M̃s(T̃ )| ≤ min
T ∈P(k)

k∑
s=1

|Ms(T )|,

and, under the assumptions given in Corollary 2,

k
N

r̃
+ (k + 1)ε ≤ kN

r
+ (k + 1)ε

According to Proposition 2, increased local clustering de-
creases the bound on the expected number of final adopters
(while the neighborhood properties are being held constant).
We note that each cluster is indeed a strong candidate for
forming a cohesive set by itself due to large number of ties
among its members. Therefore, as the network clustering
increases, individuals are more likely to form cohesive sets
with others that are in close proximity. This, in return, will
decrease the cardinalities of such sets and increase r.
As we have discussed previously, the common intuition in the
literature is that highly clustered networks with short range
links only might be more advantageous for complex conta-
gions (e.g., [7], [9]), since locally dense clusters reinforce
adoption, i.e., individuals in densely connected clusters are
more likely to be exposed to multiple adopters (overlapping
influences) through short cycles.
However, locally dense clusters will reinforce adoption if
there exists at least one adopter inside the cluster itself.
Moreover, a locally dense cluster, which does not contain any
seed nodes, is highly stable and might resist the innovation.
In other words, clustering might reinforce adoption once the
innovation penetrates inside the cluster, however, it might
also weaken adoption by making the initial penetration
more difficult. Therefore, especially for small values of k,
networks with a small degree of clustering and with long
range links might diffuse the innovation further.



Fig. 3. Empirical distribution of the number of final adopters under
stochastic linear threshold model.

In [5], [6], the authors study the effect of the network struc-
ture on the convergence time, and discuss that innovations
diffuse faster on highly clustered networks, and much more
slowly on networks with a smaller degree of clustering.
While our findings might seem to contradict with the results
in these studies, we note that we utilize a different metric,
i.e., the expected number of adopters rather than convergence
time.

V. STOCHASTIC LINEAR THRESHOLD MODEL

The linear threshold model has been powerful enough to
capture the role of interpersonal influence in adoption be-
havior, and it has provided crucial insights about the com-
plex relationship between innovation diffusion and network
connectivity (threshold values, seed set). However, the model
fails to capture a very important aspect of innovation diffu-
sion, i.e., path dependence. Path dependence is based on the
idea that a few minor shocks or insignificant events along
the way could alter the course of history [4]. It has been
argued that diffusion of innovations is extremely fragile with
respect to these small shocks, i.e., diffusion of innovations
is highly path dependent4 [16]. For instance, two similar
products (similar attributes, pricing and seeding strategies,
perceived qualities) might diffuse differently on the same
network due to different realizations of minor shocks.
To be able to capture the notion of path dependence, we will
modify the linear threshold model as follows: We use xi(k)
to denote the state of agent i at iteration k. For a given i,
xi(k) can take one of the three possible values, {0, 1,−1},
i.e., not-yet-adopted, adopted or rejected. We assume that
at iteration k = 0, a subset of individuals Φ̂(0) ⊆ V is
selected as the seed for the innovation. At the next iteration,
an individual i ∈ V \ Φ̂(0) will actively consider adoption if
at least φi ∈ (0, 1] fraction of her neighbors are in the seed

4Increasing returns to adoption, self-reinforcement, positive feedbacks
and lock-in have been identified as the main causes of the fragility [15].

set, i.e.,

|Φ̂(0) ∩Ni(G)|
|Ni(G)|

≥ φi ⇒ i ∈ Φ̂(1). (11)

In other words, the set Φ̂(1) consists of individuals who have
been exposed to the innovation, and are persuaded by their
neighbors that adoption is worth considering. Each agent i ∈
Φ̂(1) immediately engages in activities that lead to adoption
or rejection of the innovation. This consideration may also
correspond to a type of trial or just the potentially costly
process of evaluating the pros and cons of the innovation.
However, consideration does not necessarily translate into
adoption. We will model the outcome of the decision process
as a Bernoulli trial with a common parameter p ∈ [0, 1].
While the parameter is common to all individuals, the trials
are independent. In other words, for each i ∈ Φ̂(1), xi(1) =
1 with probability p, and xi(1) = −1 with probability 1−p.
The parameter p determines the likelihood of the adoption
conditioned upon consideration, i.e., the larger p is, the more
likely a given individual will be adopt the innovation when
she actively considers adoption.
The set of individuals who have adopted (rejected) the
innovation at iteration k = 1 will form the set A(1) (R(1)).
In other words, A(1) = {i ∈ V|i ∈ Φ̂(1), xi(1) = 1},
R(1) = {i ∈ V|i ∈ Φ̂(1), xi(1) = −1}.
For a given k ≥ 0, the above discussion can be generalized
as follows: a node i ∈ V \

⋃k−1
l=0 Φ̂(l) will actively consider

adoption at k if

|{Φ̂(0) ∪
⋃k−1

l=1 A(l)} ∩ Ni(G)|
|Ni(G)|

≥ φi ⇒ i ∈ Φ̂(k)

and node will adopt or reject at iteration k according to the
Bernouillli trial with parameter p.
We denote the above model as the stochastic linear threshold
model. The main difference between our model and the linear
threshold model is that individuals do not necessarily adopt
the innovation if the fraction of their neighbors that have
adopted is above their threshold. For p < 1, an individual
can reject the adoption with non-zero probability, possibly
due to minor shocks.
In Fig. 3, we plot empirical distribution of the number of final
adopters on a sample network with p = 0.95.5 Even tough p
is close to 1, there exists significant variation in the number
of final adopters. In other words, minor shocks to individuals’
adoption decisions might generate significant variability in
the outcome of the decision process, i.e., the stochastic
threshold model captures the notion of path dependence.
At this point, there are several interesting questions to be
answered including the relationship between the parameters
and the distribution of the number of final adopters. Due to
the space limitations, we will present the formal analysis of
the stochastic model in [17].

5A small world network with 1000 nodes, rewiring probability 0.5, seed
node cardinality 5, threshold values are uniformly distributed in the interval
[0, 1], and 5000 runs.



Fig. 4. Threshold values versus E[Φ?] .

Fig. 5. Clustering coefficient versus E[Φ?] .

VI. SIMULATIONS

In the following, we will test our hypothesis with simu-
lations. We plot the relationship between threshold value
distribution and the expected number of final adopters in
Fig. 4. For simulation purposes, for a given threshold
distribution, we generate 1000 small world networks with
1000 node and rewiring probabilities {0.1, 0.5, 0.9}. For a
given value α in the x-axis, threshold values are uniformly
distributed in the interval [0, α]. As our bounds suggest,
the expected number of adopters decrease, as the threshold
values decrease. We note that the curves are relatively flat at
both tails, and there is a sharp decrease in between. In Fig. 5,
we plot the relationship between the clustering coefficient
of the network and the expected number final adopters.
For simulation purposes, for a given rewiring probability,
we generate 1000 small world networks with 1000 nodes.
Rewiring probabilities are in the range [0, 1]. We note that as
the rewiring probability increases, the clustering coefficient
of the graph will decrease. For each realization of the
network, we draw uniformly random threshold values for

each node. Similarly, seed sets of size {1, 3, 5} are chosen
uniformly randomly. As our results suggest, the expected
number of adopters decreases as the network becomes more
clustered.

VII. CONCLUSION

In this paper, we focused on the linear threshold model on
deterministic topologies and heterogeneous threshold values.
By extending the definition of cohesivess by Morris [3],
we completely characterized the set of final adopters in
terms of cohesive subsets of the network. We, then, focused
on a random seeding scenario, where seeds are uniformly
distributed over the society. By using the expected number
of final adopters as our metric, we explored the relationship
between our metric and clustering of the network, threshold
values and the cardinality (of the seed set). Interestingly,
our results suggest that highly clustered networks are not
necessarily more advantageous over less structured networks
with large numbers of random links. While clusters promote
diffusions when there exists a seed node inside them, they
are hard to penetrate when they are not targeted during
initial seeding phase. Finally, we introduce an extension to
the linear threshold model to capture path dependence. We
discuss that, under the new model, minor shocks to the
individuals’ adoption decisions might alter the outcome of
the diffusion process significantly.
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